Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrical exercise system gives paralysis sufferers power to recover strength

03.08.2005


Electrical exercise system gives paralysis sufferers power to recover strength



People affected by paralysis could enjoy more independence, better health and a higher quality of life thanks to an innovative system designed to improve fitness and increase arm strength.

It uses electrical signals to stimulate movement in arm muscles where function has been lost, making it possible to work an arm-exercise machine (similar to an exercise bike but worked by the arms).


This enables people with paralysis to enjoy the health benefits of regular work-outs. For those with some function in their arms, it also helps them become strong enough to perform more activities unaided (wheelchair propulsion, moving from wheelchair to bed/bath, washing and eating etc). Aimed at people with injuries to the spinal cord, the system may be able to help those with paralysis caused by strokes or head injuries too.

This breakthrough is the result of a collaborative project undertaken by University of Glasgow engineers and Glasgow’s Queen Elizabeth National Spinal Injuries Unit with funding from the Engineering and Physical Sciences Research Council (EPSRC). A company is now commercialising the research with a view to a product launch in the coming months. The project team is also producing a video with EPSRC support to raise awareness of its work among people with paralysis and the healthcare community.

Using electrodes placed on the skin, small pulses of electricity are delivered to the nerves serving the biceps and triceps, replacing signals from the brain that can no longer reach the nerves. Controlled from a computer, the signals’ timing and strength can be adjusted to suit individual needs, eg when signs of muscle fatigue become apparent. The arm-exercise machine is linked into the computer system, enabling the effort needed to turn the machine to be adjusted.

Tetraplegic Sean Roake was one of the volunteers who worked with the project team during the research. His training programme, which consisted of three 20-30 minute sessions per week for several months, resulted in a 450% increase in muscle strength and a 50% increase in cardiopulmonary fitness. He says: “Everyday activities such as wheelchair-to-car transfers are so much easier now. I feel extremely positive knowing that I’ve taken responsibility for improving my health by exercising regularly using this system”.

Sylvie Coupaud, Research Assistant on the project and now a clinical scientist at the Spinal Injuries Unit, says: “By working closely with consultants at the unit, we identified the need for new exercise options in spinal cord injury. The technology we developed may offer a useful rehabilitation and home exercise tool for some people with tetraplegia”.

Notes for Editors:

The project ‘Development of Systems for Tetraplegic Arm Cranking using Functional Electrical Stimulation’ lasted two and a half years and received just over £122,000 of EPSRC funding.

The study investigated the feasibility of using functional electrical stimulation (FES) to deliver low-level pulses of electrical current to paralysed upper arm muscles and so enable arm exercise to be undertaken, provided that the relevant nerves are not damaged. FES was previously developed by the University of Glasgow with EPSRC support. A successful FES network bringing together groups from academia and industry has also been established.

A further EPSRC-funded project at the University of Glasgow is currently assessing the potential health benefits of applying FES technology to leg exercise.

Regular exercise can help people with paralysis reduce the risk of developing cardiovascular and other diseases associated with inactive lifestyles.

The video currently in production, ‘Engineering Research for Spinal Cord Injury’, is being developed in collaboration with the Spinal Injuries Association and Spinal Injuries Scotland. Due to be released in late autumn/early winter, it will highlight the benefits of research being carried out on the development of systems that use FES to restore function to paralysed muscle. The video includes a section on the research described in this press release. In addition to a full length version, two shorter versions of the video will be produced aimed specifically at (i) people with spinal cord injuries and (ii) the healthcare community.

Tetraplegia is the inability to move one’s arms and legs.

The Engineering and Physical Sciences Research Council (EPSRC) is the UK’s main agency for funding research in engineering and the physical sciences. The EPSRC invests more than £500 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone’s health, lifestyle and culture. EPSRC also actively promotes public awareness of science and engineering. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK.

Lisa Green | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>