Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use ultrasound to describe subtle heart muscle motions

29.07.2005


Possible ’early warning system’ for heart problems



By using sound waves Mayo Clinic researchers have described subtle changes in the motion of the heart that are measurable by ultrasound and may improve understanding of heart function, and possibly be a noninvasive aid in predicting impending heart damage including heart attacks. The study could also contribute to optimal adjustment of cardiac pacemakers or perhaps better design of artificial hearts. The findings, published in the current Journal of Applied Physiology [JApplPhysiol.000191.2005], are based on "snapshots" of the mechanical transitions that occur between the main relaxation and contraction phases of the heartbeat. During these split-second transitions, the heart muscle "shifts gears" or prepares for the upcoming phase.

"This is only a start and much work is needed, but we are optimistic that our research will ultimately lead to development of noninvasive, broadly clinically available methods in diagnostic ultrasonography," says Marek Belohlavek, M.D., Ph.D., Mayo Clinic ultrasound imaging specialist and senior researcher of the study. "These methods could improve our chances in predicting cardiac events, so that preventive measures could be taken. And in patients with an existing heart condition, a detailed analysis of cardiac function could contribute to therapeutic optimization of heart performance." A patent application has been filed based on this research.


Researchers at the Mayo Clinic Translational Ultrasound Research Unit study the mechanical, biochemical and electrical aspects of these transitions which occur between phases of relaxation -- when the heart ventricles fill with a volume of blood -- and contraction -- when the heart ejects most of the blood volume into body circulation. Recently advanced, high-resolution ultrasound tissue Doppler imaging allowed them to experimentally measure these transitional tissue deformations, which last only milliseconds and are unnoticeable to the human eye. The technology allows slow-motion comparisons of these events separately between the inner and outer layers of the cardiac left ventricle. The researchers’ published measurements demonstrate how a rapid succession of motions occurring within tissue of the ventricular wall can appear chaotic if not observed closely and with high temporal resolution. The data also show how these transitions "reorganize" the ventricle to best perform its cycles of filling and ejection.

Significance of the Findings

Alterations in the cardiac mechanical transitions detected by ultrasound imaging can be used as early indicators to predict heart problems, without the risk of an invasive procedure. Such an early warning system could allow physicians to intervene with appropriate therapies and thus prevent problems that could lead to heart attack or heart failure. The knowledge may also help researchers to develop new and targeted treatments in some heart diseases or further improve cardiac pacemakers or artificial hearts.

Animal Model of Heart Functioning

Until recently, it was thought to be sufficient to study the function of the heart muscle during the relaxation and ejection phases of the heartbeat. Now, technological improvements in imaging have allowed studies of the heart muscle condition during the transitional phases. These short-lived mechanical transitions are successfully accomplished and prepare the heart for the next beat optimally only if the mechanical, biochemical and electrical events in the cardiac muscle work in concert and delivery of nutrients and oxygen are uninterrupted. Understanding these rapid transitional events not only improves fundamental understanding of heart functioning, but their dependence on various conditions makes these events vulnerable. This vulnerability translates into early changes in the transitional events detected by the state-of-the-art diagnostic imaging methods.

Using pigs as a very close model to human heart function, researchers established benchmarks for measuring normal and abnormal transitions in heart muscle layers. Accurate analyses of motion, deformation (strain), electrical impulses and other parameters characterize the transitional events between the phases of cardiac filling and ejection.

Lee Aase | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>