Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetic nerve therapy shows ‘striking’ results

26.07.2005


Research into a new treatment for nerve damage caused by diabetes could bring relief to millions of diabetic patients, say experts.



The treatment might also reduce the number of amputations of toes and feet if early effects on nerve protection and regeneration are borne out long-term. Nerve disease in diabetes is the major cause of non-traumatic lower limb amputations in Europe and North America.

Scientists at the University of Manchester, working with colleagues at American biotech firm Sangamo BioSciences Inc, have discovered a way of stimulating genes that prevent nerve damage caused by the disease.


Professor David Tomlinson, who is leading the research in Manchester, says the study has massive potential for the management of diabetic neuropathies or nerve disorders.

“Diabetic neuropathy is a major problem in insulin-dependent diabetes, particularly in patients who have had the disease for a period of time,” said Professor Tomlinson, who is based in the University’s Faculty of Life Sciences.

“This approach to gene therapy is quite different to previous attempts at treatment as we do not inject a gene that produces a ‘foreign’ copy of a therapeutic protein. This is the normal approach and has problems from immunological side-effects.

“Instead, we turn on the patient’s own gene to produce a natural version of this therapeutically beneficial protein. The most significant advantage of this is that the protein is made as if the patient’s body had made it naturally.

“Our study has shown that a single treatment with a DNA-binding protein protected against nerve damage that in humans can lead to limb loss.”

The results of the pre-clinical studies were recently presented to the American Diabetes Association in California and the first phase of clinical trials has now begun.

An estimated 50 per cent of patients with long-term diabetes develop some form of neuropathy that can cause numbness and sometimes pain and weakness in the hands, arms, feet and legs.

Currently, patients are treated with painkillers and antidepressants that do not treat the underlying nerve damage. Progression to amputation is not inevitable but is always a threat.

Problems may also occur in other organs, including the heart, kidneys, sex organs, eyes and digestive tract.

The incidence of diabetes, a condition in which the amount of glucose in the blood is too high, is increasing dramatically, with the World Health Organisation estimating that some 300 million people worldwide could be affected by 2025.

The causes of diabetic neuropathy are not fully understood but researchers investigating the effect of glucose on nerves believe it is likely to be a combination of factors.

Sangamo’s Chief Medical Officer, Dr Dale Ando, said: “We have been greatly encouraged by Professor Tomlinson’s data and have moved the programme into the clinic.

“The first phase of human trials will assess safety and examine the effects of a single treatment in one leg compared with a placebo treatment in the other leg.”

The Diabetes and Glandular Disease Clinic in San Antonio, Texas, is involved in the clinical trials.

Dr Mark Kipnes, a clinical investigator for Sangamo and endocrinologist at the clinic, said: “Currently, there are no effective therapies available to treat this debilitating and frequent complication of diabetes and patients are generally prescribed painkillers to alleviate symptoms.

“We are excited to be involved in testing this novel approach that may potentially have a dramatic therapeutic effect in populations of patients already suffering from neuropathy and those that are at risk of developing it.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk/press/title,37261,en.htm

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>