Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Six previously blind patients detect light, motion, identify objects with retinal prostheses

02.05.2005


USC researchers present information on ’artificial retina’ May 2 at ARVO 2005



Researchers from the University of Southern California and the Doheny Eye Institute’s Doheny Retina Institute will be presenting data on the first six patients implanted with an intraocular retinal prosthesis-more popularly referred to as an artificial retina-developed and manufactured in partnership with Second Sight Medical Products, Inc., of Sylmar, Calif.

According to Mark Humayun, professor of ophthalmology at the Keck School of Medicine and the lead investigator on the project, all six of the previously blind patients have been able to detect light, identify objects in their environment, and even perceive motion after implantation with the epiretinal device.


Data collected as of November of 2004 showed that the six patients-who had been implanted with a single prosthesis in their "worse eye" for between 5 and 33 months-were able to "localize the position of, or count the number of, high contrast objects with 74 to 99 percent accuracy," Humayun says. In addition, they could discriminate simple shapes-i.e., figure out the spatial orientation of a bar or the capital letter L-with 61 to 80 percent accuracy.

The researchers also noted that when there is no electricity running through the device, the subjects do not show any improvement in perceptual acuity, "suggesting that electrical stimulation did not improve the health or function of the retina."

Thus far, participants in the study have been people with little or no sight perception due to the degenerative eye disease retinitis pigmentosa (RP). Ultimately, however, the device is likely to be used for the millions of people suffering from age-related macular degeneration, or AMD, as well. In fact, notes Humayun, there are 25 million people across the globe, including 6 million in the United States alone, who have been blinded, or are severely visually impaired, due to disease like RP and AMD. By 2020, that figure is expected to double, creating a virtual vision-loss epidemic.

Both AMD and RP destroy vision by annihilating the retinal cells that allow light to be translated into recognizable images.

Second Sight’s intraocular retinal prosthesis is taking the first step to replacing those cells with its device, a 4-by-4 grid of platinum electrodes embedded in silicone rubber. The electrodes are wirelessly stimulated through an external controller hooked up to a head-mounted video camera.

Sarah Huoh | EurekAlert!
Further information:
http://www.usc.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>