Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotic might fight HIV-induced neurological problems

29.04.2005


By studying animals, Johns Hopkins researchers have discovered that the antibiotic minocycline might help alleviate HIV’s negative effects on the brain and central nervous system, problems that can develop even though antiretroviral therapy controls the virus elsewhere in the body.



Five monkeys infected with simian immunodeficiency virus (SIV), a very close relative of HIV, and treated with minocycline had less damage to brain cells, less brain inflammation, and less virus in the central nervous system than six infected monkeys that received no treatment, the researchers report in the April 27 issue of the Journal of the American Medical Association.

"In people, antiretroviral treatments do a great job of controlling HIV in blood, but most of the drugs don’t cross the blood-brain barrier very well," says Christine Zink, D.V.M., Ph.D., professor of comparative medicine at the Johns Hopkins University School of Medicine. "As a result, even though the infection seems to be controlled, it may still cause damage in the brain. And because people are living with HIV longer than ever, the prevalence of neurological damage is increasing. Currently, there’s no drug to treat it directly."


In use for more than 30 years, minocycline was specifically designed to cross the blood-brain barrier, the biological "wall" that limits what can pass from the blood into the brain. Other researchers have reported that this antibiotic can protect brain cells in animal models of other diseases -- multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease, stroke and more. The drug is being tested in early clinical trials for some non-HIV-related conditions.

"Last year we discovered that SIV triggers some of the same biological pathways of cell death and inflammation as these other diseases," says Sheila Barber, Ph.D., assistant professor of comparative medicine. "Testing minocycline in our animal model of HIV infection was really a logical next step."

A multicenter clinical trial is being planned to test whether minocycline has the same effects in HIV-infected people as it does in SIV-infected monkeys, but it is not expected to start until sometime next year.

"It is too early to recommend minocycline for patients," emphasizes Ned Sacktor, M.D., an associate professor of neurology at the Johns Hopkins Bayview Medical Center who wasn’t involved with the current study, but who is one of the physicians planning the clinical trial. "One needs to proceed with a clinical research trial first to prove its safety and efficacy against HIV-associated cognitive impairment."

SIV and HIV both affect the same tissues in the same way and use the same tricks to infect cells and outwit treatments, but SIV infects only non-human primates, and HIV only infects people. Antiretroviral drugs target and interfere with the viral proteins needed to accomplish this.

In contrast, minocycline doesn’t target the virus or its proteins. While they’re still working out the details, the researchers have shown that minocycline "calms down" as yet undefined biological pathways that involve two specific proteins -- MCP-1 and p38 -- implicated in damage in neurodegenerative diseases.

The MCP-1 protein, when secreted from brain cells under attack from HIV or SIV, attracts infection-fighting cells known as macrophages, which then enter the brain. The influx of these cells contributes to swelling and inflammation known as encephalitis. The other protein, p38, helps trigger a series of events that result in a cell’s programmed death, called apoptosis.

Only one of the five treated monkeys showed any signs of encephalitis, and that monkey’s condition was deemed mild by a set of standard measures. After the same amount of time -- 84 days after infection -- five of the six untreated monkeys had evidence of moderate or severe encephalitis and much more physical evidence of damage to brain cells, the researchers report.

"The infection in the animal model is predictable and aggressive, so we can get meaningful data by studying fewer animals," says Zink, who was on the team that developed the model about six years ago. "It’s a really demanding test of a potential treatment for HIV."

The animal model has already helped improve understanding of how HIV might affect the brain, and this is the first time it’s been used to test a potential treatment. Studies with the animals are augmented by laboratory experiments with cells to clarify observations.

Notably, these laboratory experiments have shown that minocycline somehow suppresses replication of HIV and SIV in macrophages -- the immune cells recruited to the brain during HIV infection -- and lymphocytes -- immune cells that carry "sleeping" HIV and SIV even when antiretroviral treatment is effective.

"If this preliminary observation holds up, minocycline could be really important for treating HIV infection in developing countries where access to traditional antiretroviral drugs is very limited," says Zink. "Most of the 40 million people with HIV infection live in these countries."

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

nachricht Pain: Perception and motor impulses arise in the brain independently of one another
12.12.2018 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Success at leading conference on silicon materials science and technology in Japan

13.12.2018 | Awards Funding

NSF-supported scientists present new research results on Earth's critical zone

13.12.2018 | Earth Sciences

Barely scratching the surface: A new way to make robust membranes

13.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>