Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer’s cognitive decline slowed

25.04.2005


PET scans and cognitive tests have suggested that Alzheimer’s disease patients with genetically modified tissue inserted directly into their brains show a reduction in the rate of cognitive decline and increased metabolic activity in the brain, according to a study published in the April 24, 2005 online issue of the journal Nature Medicine by researchers at the University of California, San Diego (UCSD) School of Medicine.



PET scans demonstrated an increase in the brain’s use of glucose, an indication of increased brain activity, while mental-status tests showed a slowing of the patients’ rate of cognitive decline was reduced by 36 to 51 percent. In addition, researchers examined the brain tissue of a study participant who had died and found robust growth of extensions from the dying cholinergic cells near the site of growth factor gene delivery. Cholinergic neuron loss is a cardinal feature of Alzheimer’s disease, a progressive brain disorder affecting memory, learning, attention and other cognitive processes.

"If validated in further clinical trials, this would represent a substantially more effective therapy than current treatments for Alzheimer’s disease," said Mark Tuszynski, M.D., Ph.D., UCSD professor of neurosciences, neurologist with the VA San Diego Healthcare System, and the study’s principal investigator. "This would also represent the first therapy for a human neurological disease that acts by preventing cell death."


In this first-ever gene therapy for Alzheimer’s disease, UCSD physician-scientists took skin cells from eight patients diagnosed with early Alzheimer’s disease. The tissue was modified in the lab to express nerve growth factor (NGF), a naturally occurring protein that prevents cell death and stimulates cell function. In surgeries that took place in 2001 and 2002 at UCSD’s John M. and Sally B. Thornton Hospital, the genetically modified tissue was implanted deep within the brains of the eight patients who had volunteered for the study.

The human clinical trial was undertaken following extensive studies in primates conducted by Tuszynski and colleagues, which showed that grafting NGF-producing tissue into the brains of aged monkeys restored atrophied brain cells to near-normal size and quantity, and also restored axons connecting the brain cells, essential for communication between cells. The recent human studies were a Phase I clinical trial, designed to test safety and toxicity. The procedure was initially performed while patients were awake but lightly sedated, and two patients moved as the cells were being injected, resulting in bleeding in the brain. One of these patients died five week later. As a result of the bleeds, the protocol was redesigned to perform the procedure under general anesthesia and all subsequent procedures were performed without complication.

Cognitive outcomes were assessed in the six patients who completed the NGF delivery procedure safely. The Mini Mental Status Examination (MMSE), which evaluates cognitive function, was administered at screening, the time of treatment and at several intervals after treatment. Over an average post-treatment follow-up period of 22 months, the rate of decline on the MMSE among NGF-treated patients was reduced by as much as 51 percent. An additional test, called the Alzheimer’s Disease Assessment Scale-Cognitive Subcomponent, or ADAS-Cog, also showed improvements in rates of decline followed the MMSE findings.

Post-operative PET scans in four subjects showed significant increases in the brain’s absorption of a radioisotope called 18-fluorodeoxyglucose, an indicator of increased metabolic activity in the brain. The researchers noted that the increase was observed in most cortical regions that receive cholinergic input from forebrain nerve cells called the nucleus basalis, and in the cerebellum, a structure associated with cortical plasticity.

In addition to Tuszynski, authors of the paper in Nature Medicine, were Leon Thal, M.D., UCSD chair of neurosciences, director of the UCSD Shiley-Marcos Alzheimer’s Disease Research Center (ADRC), and a neurologist with the VA San Diego Healthcare System; Mary Margaret Pay., R.N., David P. Salmon, Ph.D., Armin Blesch, Ph.D., Gilbert Ho, M.D., Gang Tong, M.D., Lawrence Hansen, M.D., and James Conner, Ph.D., of the UCSD Department of Neurosciences; Hoi Sang U, M.D., UCSD Department of Surgery; Lee Vahlsing, M.S., UCSD Department of Neurosciences and VA San Diego Healthcare System; Roy Bakay, M.D., Rush University Department of Surgery; Piyush Patel, M.D., UCSD Department of Anesthesiology; Steven G. Potkin, M.D. and Christine Gall, Ph.D., UC Irvine Department of Neurology; James Fallon, Ph.D., UC Irvine Department of Neurobiology; Elliott J. Mufson, Ph.D. and Jeffrey H. Kordower, Ph.D., Rush University Department of Neurosciences.

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>