Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles offer new hope for detection and treatment

25.04.2005


The nanoparticles shown here are irregularly shaped due to the fixing process for electron microscopes. They are normally perfect spheres.


The top image shows an MRI of a melanoma tumor without nanoparticles. The bottom one shows the same tumor lighted up by nanoparticles.


Particles could make earlier cancer diagnosis possible

Specially designed nanoparticles can reveal tiny cancerous tumors that are invisible by ordinary means of detection, according to a study by researchers at Washington University School of Medicine in St. Louis.

The researchers demonstrated that very small human melanoma tumors growing in mice—indiscernible from the surrounding tissue by direct MRI scan—could be "lit up" and easily located as soon as 30 minutes after the mice were injected with the nanoparticles.



Because nanoparticles can be engineered to carry a variety of substances, they also may be able to deliver cancer-fighting drugs to malignant tumors as effectively as they carry the imaging materials that spotlight cancerous growth. "One of the best advantages of the particles is that we designed them to detect tumors using the same MRI equipment that is in standard use for heart or brain scans," says senior author Gregory Lanza, M.D., Ph.D., associate professor of medicine. "We believe the technology is very close to being useful in a hospital setting."

Lanza and his colleague Samuel Wickline, M.D., professor of medicine, are co-inventors of this nanoparticle technology. The effectiveness of the nanoparticles in diagnosis and therapy in humans will be tested in clinical trials in about one and a half to two years. The spherical nanoparticles are a few thousand times smaller than the dot above this "i," yet each can carry about 100,000 molecules of the metal used to provide contrast in MRI images. This creates a high density of contrast agent, and when the particles bind to a specific area, that site glows brightly in MRI scans.

In this study, MRI scans picked up tumors that were only a couple of millimeters (about one twenty-fifth of an inch) wide. Small, rapidly growing tumors cause growth of new blood vessels, which feed the tumors. To get the particles to bind to tumors, the researchers equipped them with tiny "hooks" that link only to complementary "loops" found on cells in newly forming blood vessels. When the nanoparticles hooked the "loops" on the new vessels’ cells, they revealed the location of the tumors. Nanoparticles are particularly useful because of their adaptability, according to Lanza, who sees patients at Barnes Jewish Hospital. "We can also make these particles so that they can be seen with nuclear imaging, CT scanning and ultrasound imaging," Lanza says.

In addition, the particles can be loaded with a wide variety of drugs that will then be directed to growing tumors. "When drug-bearing nanoparticles also contain an imaging agent, you can get a visible signal that allows you to measure how much medication got to the tumor," Lanza says. "You would know the same day you treated the patient and if the drug was at a therapeutic level." Using nanoparticles, drug doses could be much smaller than doses typically used in chemotherapy, making the procedure potentially much safer. "The other side of that is you have the ability to focus more drug at the tumor site, so the dose at the site might be ten to a thousand times higher than if you had administered the drug systemically," Lanza says.

The nanoparticles also may permit more effective follow up, because a doctor could use them to discern whether a tumor was still growing after radiation or chemotherapy treatments. Although this study focused on melanoma tumors, the researchers believe the technology should work for most solid tumors, because all tumors must recruit new blood vessels to obtain nutrients as they grow. Nevertheless, melanoma has unique traits that make it especially interesting as a target for nanoparticle therapy. Melanoma has a horizontal phase, when it spreads across the skin surface, and a vertical phase, when it goes deep into the body and grows quickly. "Once melanoma has moved into its vertical phase, it is almost untreatable because by the time the tumors are large enough to detect, it’s too late," Lanza says. "With the nanoparticles, we believe we would be able to see the smallest melanoma tumors when they are just large enough to begin new blood vessel formation. Plus, we should be able to deliver chemotherapeutic drugs right to melanoma cells, because melanoma tumors create blood vessels using their own cells."

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Genetic differences between strains of Epstein-Barr virus can alter its activity
18.07.2019 | University of Sussex

nachricht Machine learning platform guides pancreatic cyst management in patients
18.07.2019 | American Association for the Advancement of Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>