Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Six bangs and the bug’s out: light pulses as disinfectants

06.04.2005


Intense light pulses can kill 99.999% of food poisoning bugs in just six bursts, say researchers from Strathclyde University today (Wednesday, 06 April 2005) presenting at the Society for General Microbiology’s 156th Meeting at Heriot-Watt University, Edinburgh.



The dangerous food poisoning bacteria Listeria monocytogenes can be effectively cleared from contaminated kitchen surfaces, water treatment plants, hospital operating theatres, and even from the air by using pulses of intense ultra-violet light, according to scientists from the Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), based at the University of Strathclyde in Scotland.

The bursts of UV-rich light last just one millionth of a second each, but six pulses are enough to effectively disinfect an area, killing all but one in every hundred thousand bacteria. The researchers found that the way the bacteria were grown affected their susceptibility to the light pulses, with already stressed bacteria most likely to be killed.


Traditional methods of sterilising foods by using pasteurisation or chemical treatments are generally effective, but they can leave behind dangerously resistant bacteria. The new pulsed-light form of disinfection can kill food bugs very rapidly in exposed situations, if used at the right time in the bacteria’s development.

"Listeria can cause serious disease, especially during pregnancy or in people with weakened immunity, such as the elderly, sick or young children," says Mohd Nizam Lani, who is undertaking PhD research in this area under the supervision of Professor John Anderson (microbiologist) and Professor Scott MacGregor (electrical engineer) at Strathclyde. "By developing a new method to control these bacteria we hope to help safeguard foods and protect consumers."

The ability of the bacteria to survive exposure to UV light depended upon the way they were originally grown. The researchers found that Listeria monocytogenes also has a light repair mechanism, and some of the UV damaged bacteria could recover if they were later exposed to light of a longer wavelength.

The findings of the research open up new methods of preventing human illness, and will have important applications in catering, food and beverage handling, waste and water treatment, and hospital settings. In the clinical and healthcare sector, pulsed light may provide an effective treatment to destroy bacteria in the air and on surfaces in hospitals, helping to control the spread of hospital-acquired infections.

Faye Jones | alfa
Further information:
http://www.sgm.ac.uk

More articles from Health and Medicine:

nachricht New flexible, transparent, wearable biopatch, improves cellular observation, drug delivery
12.11.2018 | Purdue University

nachricht Exosomes 'swarm' to protect against bacteria inhaled through the nose
12.11.2018 | Massachusetts Eye and Ear Infirmary

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>