Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Hope for Chagas Disease Treatment

01.04.2005


Chagas disease, which is transmitted to humans by a blood-sucking insect known as an Assassin bug, is the most devastating parasitic infection in Central and South America and Mexico. The protozoan parasite that causes the disease, Trypanosoma cruzi, infects 16 to 18 million people, causing severe chronic illness and tens of thousands of deaths per year.



Until now, there has been no effective treatment for the long-term, chronic form of Chagas disease, which kills up to one-third of those infected, usually by heart failure. However, two Howard Hughes Medical Institute (HHMI) international research scholars have now found that in mice, a compound called TAK-187 is significantly more effective than the current standard of care - the drug benznidazole - in preventing T. cruzi-induced cardiac damage. Julio Urbina from the Venezuelan Institute for Scientific Research, Miguel Angel Basombrio from the National University of Salta, and colleagues report their findings in an early online publication of the April issue of the journal Antimicrobial Agents and Chemotherapy.

“Only one percent of the new drugs introduced to the market in the last 25 years were developed to treat tropical diseases, despite the enormous unmet need for such compounds.”
Julio Urbina



Benznidazole, a drug used to treat acute, recent Chagas infections, often has toxic side effects and does not work once the disease has entered its chronic phase. As an alternative, Urbina, Basombrio, and colleagues tested TAK-187, a compound that prevents T.cruzi from producing a member of the steroid family called ergosterol, which is essential to the parasite’s life cycle. The compound is currently in development as a systemic antifungal agent, but the results of the current study suggest that drugs of this type, which inhibit ergosterol synthesis, could be a “superior alternative to currently available therapy in the management of chronic Chagas disease,” Urbina and Basombrio write in their report.

The scientists infected a group of mice with T.cruzi, then treated those mice with either TAK-187, benznidazole, or nothing at all. While both drugs eliminated T.cruzi from the blood of infected animals, the researchers found that TAK-187 was more effective at preventing cardiac and skeletal inflammation and tissue damage, with no toxic side effects. Cardiac and skeletal damage occur in chronic Chagas infection, causing crippling and death.

Importantly, TAK-187 was effective at a dose that was both 10 times lower and administered less frequently than that of benznidazole. The researchers think this may be because the new compound is eliminated more slowly than benznidazole from the treated animals and is also more resistant to metabolism by the mammalian host.

The latest study confirms results published in 2003 by Urbina and colleagues in the International Journal of Antimicrobial Agents, when they found TAK-187 effective against drug-resistant strains of T.cruzi.

“These results, together with the previous publication, are very promising,” said Roberto Docampo, a professor at the Center for Tropical and Emerging Global Diseases at University of Georgia. “The results strongly support the view that a more efficient treatment for Chagas disease could be available.” But Louis Kirchhoff, a professor at University of Iowa, questions whether the drug is effective enough. “TAK-187 suppresses T-cruzi,” he said. “What we are looking for is a compound that wipes out the parasite.”

Urbina and colleagues now plan clinical trials to determine the safety and efficacy of TAK-187 in patients with Chagas disease. “We must now examine the safety and effectiveness of therapeutic doses of this drug and determine the optimal administration schedule, the treatment duration, and its possible combination with other drugs,” said Basombrio, who started studying the disease 28 years ago because it is so prevalent in his homeland of Argentina.

Takeda Chemical Company, the largest pharmaceutical manufacturer in Japan, has patented TAK-187 as a systemic antifungal agent. “The clinical development of this compound as an anti-T-cruzi agent in humans will depend on legal and economic agreements with Takeda, which are being sought through the World Health Organization,” said Urbina.

The Venezuelan started doing basic research on Chagas disease 25 years ago, concerned by the neglect of this tropical disease by the pharmaceutical industry and most academic research centers in Latin America and throughout the world. “Only one percent of the new drugs introduced to the market in the last 25 years were developed to treat tropical diseases, despite the enormous unmet need for such compounds,” he said. “Only 10 percent of current global health research is directed to address the medical needs of 90 percent of the human population.”

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Sustainable energy supply in developing and emerging countries: What are the needs?

21.11.2018 | Power and Electrical Engineering

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>