Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To train the eye, keep it simple

31.03.2005


Researchers find that human eyes learn best in an uncluttered setting



If athletes, soldiers and drivers must perform every day in visually messy environments, common sense suggests that any visual training they receive should include distractions and disorder. New research from the University of Southern California and UC Irvine suggests common sense is wrong in this case.

The human vision system learns best in "clear display" conditions without visual noise, said co-authors Zhong-Lin Lu and Barbara Anne Dosher. Their findings appear in a pair of articles in the current issue of PNAS. The research has long-range implications for rehabilitation therapy, treatment of individuals with "lazy eye" or related disorders and training of soldiers, police officers and other personnel who must make split-second decisions in chaotic situations. "Now you can simplify training a lot," said Lu, a professor of psychology in the USC College of Letters, Arts and Sciences. "Soldiers, for example, have to operate with goggles and all kinds of (visual) devices. Pilots have other kinds of goggles, video displays. They operate in different environments with different kinds of noise and different kinds of interference." "What these results show is, in fact, you only need to train them in a clear display environment."


In their studies, Lu and Dosher asked subjects to identify the orientation of simple geometric patterns flashed on a screen. The subjects’ performance improved dramatically after several sessions, in line with other studies that have shown the human eye to be highly trainable. The difference came in the way subjects adapted to different environments. Those subjects who were trained with clear displays also showed improvement with noisy displays. The reverse was not true: Subjects trained with noisy displays performed no better with clear displays. "That was a huge surprise to us," Lu said. "High noise training comes for free."

The researchers believe that noisy displays impose an artificial limit on a subject’s potential improvement. The roughness of the image trains the eye’s "filtering" ability but also masks the internal flaws of the visual system.

In clear display training, by contrast, the eye can focus entirely on reducing the intrinsic noise of human visual processes (the researchers refer to this process as "stimulus enhancement"). In addition, Lu said, clear display training may strengthen image recognition by improving perceptual templates.

The results also suggest that the two types of perceptual learning studied – noise filtering and stimulus enhancement – take place in different areas of the visual system. By training each eye separately, Lu, USC graduate student Wilson Chu, Dosher and USC undergraduate Sophia Lee found that noise filtering transferred completely from the trained eye to the untrained eye. Stimulus enhancement transferred only partially.

This implies that noise filtering is a "binocular" mechanism that serves both eyes at once, the researchers propose. Stimulus enhancement, on the other hand, is "monocular": The eye that is trained receives most of the benefit.

The researchers concluded that for optimal training, each eye should be trained separately in clear displays.

"Then you’re done," Lu said.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>