Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings about protection against pneumococcal disease

31.03.2005


Findings hoped to spur the development of an improved vaccine



Since 2000, U.S. infants have been routinely immunized against pneumococcal (Streptococcus pneumoniae) infection. Now, Boston researchers have made a surprising discovery about natural immunity to pneumococcus. Two related studies, led by Dr. Richard Malley of the Children’s Hospital Boston Division of Infectious Diseases and Dr. Marc Lipsitch of the Harvard School of Public Health, suggest that natural protection from pneumococcal disease may derive from some previously unrecognized immune mechanism, which could possibly be exploited for a new vaccine. The latest study appears in the current (March 29) issue of the Proceedings of the National Academy of Sciences.

In the U.S., before the advent of the pneumococcal conjugate vaccine, known as Prevnar, S. pneumoniae caused more than 7 million ear infections each year, half a million episodes of bacterial pneumonia, and life-threatening cases of meningitis and bacteremia. Prevnar is made up of material from the outer capsule of each of the seven pneumococcal strains most common in the U.S. This material triggers recipients’ immune systems to produce so-called anticapsular antibodies specific to those strains. However, Prevnar doesn’t work against many pneumococcal strains in the developing world, where pneumococcus kills nearly 1 million children annually, and it is expensive and difficult to manufacture, leading to chronic shortages. Moreover, in several studies, use of pneumococcal conjugate vaccines caused non-vaccine strains to become more common, raising concerns that Prevnar could eventually become ineffective even in the U.S. Of 90 known pneumococcal strains, Prevnar only covers seven.


Lipsitch and Malley first conducted epidemiologic studies in unvaccinated toddlers in the U.S., Israel, and Finland. As they reported in January in the online journal PLoS Medicine, the incidence of invasive disease from almost all pneumococcal strains fell by nearly half between 1 and 2 years of age. Yet, anti-capsular antibody concentrations increased only slightly, suggesting that a mechanism other than antibody to the pathogen’s outer capsule may be conferring natural protection against pneumococcal disease.

What then might provide this protection? Looking at the first step of pneumococcal disease, colonization of the nose and throat, Malley and Lipsitch were able to elicit long-lasting immunity to pneumococcus in mice independently of any antibodies. In the current (March 29) Proceedings of the National Academy of Science, they report that when mice were exposed to live pneumococci, or to a whole-cell vaccine developed in Malley’s lab, they were highly immune to pneumococcal colonization -- even if they were genetically unable to make antibodies. Moreover, mice exposed to a single pneumococcal strain became immune not just to that strain, but to others. The immunity appeared to arise from an effect on the immune system’s CD4+ T-cells, since mice that lacked these cells did not develop immunity.

"Textbooks say that naturally-acquired protection against pneumococcal disease depends on the development of antibody against the capsule of the bacterium," says Malley, who is also an assistant professor in pediatrics at Harvard Medical School. "We were surprised to find that protection was independent of not only antibody to the capsule, but also antibody of any specificity."

Overall, their findings suggest that while antibodies are sufficient for protection against pneumococcal disease, they may not represent the natural mechanism of protection.

"An interesting observation is that HIV-infected children, whose CD4+ cells are depleted by the virus, are at about a 200-fold higher risk for pneumococcal disease," Malley adds. "Our experiments in mice may provide an explanation for that vulnerability."

The whole-cell vaccine developed by Malley’s lab could potentially protect against all pneumococcal strains, Malley says. The vaccine, made of killed pneumococcal cells, was shown to prevent colonization and invasive disease when given to animals in the form of nose drops. Malley believes the vaccine stimulates CD4+ T-cells to identify components of pneumococcus that are identical in every strain and to provide protection at the earliest stage of infection, when pneumococcus is colonizing the nasal passages.

The whole-cell vaccine, or a derivative of it, would be a boon for the developing world, because it is inexpensive, covers all pneumococcal strains, and does not require refrigeration. Malley and colleagues are now working to define precisely how the whole-cell vaccine works immunologically, and determine what parts of the killed bacterium provide the actual protection. The ultimate goal is to test the vaccine in adult volunteers, and eventually in children.

Susan Craig | EurekAlert!
Further information:
http://www.childrens.harvard.edu

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>