Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging method gives early indication if brain cancer therapy is effective

30.03.2005


Diffusion MRI shows 3 weeks into treatment if tumor is responding



A special type of MRI scan that measures the flow of water molecules through the brain can help doctors determine early in the course of brain cancer regimen if a patient’s tumor will shrink, a new study shows.

Researchers at the University of Michigan Comprehensive Cancer Center developed the assessment, which they call a functional diffusion map. They used a magnetic resonance imaging scan that tracks the diffusion, or movement, of water through the brain and mapped the changes in diffusion from the start of therapy to three weeks later. The tumor cells block the flow of water, so as those cells die, water diffusion changes.


In the study of 20 people with malignant brain tumors, the researchers found that any change in the functional diffusion map predicted 10 weeks before traditional techniques if the tumor was responding to the chemotherapy or radiation therapy. This has potential to spare patients from weeks of a grueling treatment regimen that’s not working and gives doctors the opportunity to switch patients early on to a therapy that may be more effective.

Results of the study appear the week of March 28 in the early online edition of the Proceedings of the National Academy of Sciences.

Most primary brain tumors have a high mortality rate, with people surviving only 10 months after diagnosis. Typically, patients receive seven weeks of treatment, followed by a traditional MRI scan six weeks after completing therapy to determine if the tumor shrank. If the cancer did not respond to the treatment, a new approach may be tried.

Using diffusion MRI and the functional diffusion map, the U-M researchers were able to predict with 100 percent accuracy after only three weeks of treatment whether the therapy would be effective – 10 weeks before traditional methods would show a response.

"This is an important issue in terms of patient quality of life. Do you want to go through seven weeks of treatment only to find two months later that it had no effect? Using MRI tumor diffusion values to accurately predict the treatment response early on could allow some patients to switch to a more beneficial therapy and avoid the side effects of a prolonged and ineffective treatment," said Brian Ross, Ph.D., professor of radiology and biological chemistry at the U-M Medical School and a member of the U-M Comprehensive Cancer Center.

In the study, 20 participants with brain tumors underwent diffusion MRI before beginning a new treatment involving chemotherapy, radiation therapy or a combination. Three weeks later, they had another diffusion MRI. After finishing their treatment, the participants underwent standard MRI to determine whether their tumor responded to the therapy.

After three weeks – more than two months before the final MRI scan – researchers found significant differences between the patients’ scans. Some areas reflected an increase in water diffusion, suggesting tumor cell death; other areas saw a decrease in diffusion, which Ross said could be accounted for by the swelling some cells undergo before dying; and in some participants, researchers saw no change in diffusion.

"In the end, we found if the diffusion changes in any way, up or down, it correlates to a positive outcome. The magnitude or amount of change relates to the effectiveness of treatment. This indicates a different mixture of cell death pathways within the tumors. In the end, any change is good. When you think about it, if the treatment is not having an effect, the tumor will continue to grow without any change to water diffusion," Ross said.

The researchers found that for each of the 20 patients, a change in the diffusion MRI accurately predicted the tumor’s response. Researchers plan to test the technique with breast cancer and head and neck cancer.

In addition to Ross, U-M study authors are Bradford Moffat, Ph.D., assistant professor of radiology; Thomas Chenevert, Ph.D., professor of radiology; Theodore Lawrence, M.D., Ph.D., Isadore Lampe Professor and Chair of Radiation Oncology; Charles Meyer, Ph.D., professor of radiology; Timothy Johnson, Ph.D., adjunct assistant professor and assistant research scientist in biostatistics; Qian Dong, M.D., a radiology fellow; Christina Tsien, M.D., lecturer in radiation oncology; Suresh Mukherji, M.D., associate professor of radiology; Douglas Quint, M.D., professor of radiology; Stephen Gebarski, M.D., professor of radiology; Patricia Robertson, M.D., associate professor of neurology and of pediatrics and communicable diseases; Larry Junck, M.D., professor of neurology; and Alnawaz Rehemtulla, Ph.D., associate professor of environmental health sciences, radiation oncology and radiology.

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

nachricht Loss of identity in immune cells explained
18.02.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New therapeutic approach to combat African sleeping sickness

20.02.2019 | Life Sciences

Powering a pacemaker with a patient's heartbeat

20.02.2019 | Medical Engineering

The holy grail of nanowire production

20.02.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>