Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New radio-frequency technique for knee injuries

24.02.2005


The application of a new technique for injuries of the cruciate ligament in the knee, involving the use of bipolar radio-frequency plus heat, has proved to be 90% effective in cases and shortens the recovery time of the patient. This technique, carried out by specialists at the Navarre University Hospital Department of Orthopaedic Surgery, has received the National Prize for Research into Sports Medicine, awarded annually by the University of Oviedo. The awarded work, “Retraction of anterior cruciate ligament using bipolar radio-frequency”, was penned by five doctors at the Department of Orthopaedic Surgery.



The prize-winning clinical research proposes the use of bipolar radio-frequency, plus the heat obtained thereof, to carry out retraction (tensing of the ligament); always when this is an ongoing process. These ligaments contain a lot of water and collagen fibres which shrink and tense on applying heat to them at a certain radio-frequency. The technique is carried out by arthroscopy, with specialised terminals, applying between 40 and 50 degrees of heat to the slack ligament. With this treatment, recuperation being much shorter and with a high percentage of probability of success, always when it is undertaken with the correct and exact procedures. Patients who suffer from a partial ligament injury and/or slack ligament can benefit from this surgical technique which tenses the ligament again and, over a short period of time – not more than three months - can return to sporting activity once again.

Project trials were carried out on thirty patients/sportspersons under controlled conditions at the Navarre University Hospital Department of Orthopaedic Surgery, in collaboration with the Radiology Service at the hospital. The patients were subjected to magnetic resonance studies over a period of at least year after the retraction. From these studies, satisfactory results were obtained in 90% of the patients. The remaining patients were able to benefit from more traditional treatment techniques, but with longer recuperation periods. It would appear to be the case that the technique is more effective with persons who practise sport regularly as a hobby, and in middle-aged patients and veteran sportspersons with knees somewhat deteriorated.


One of the most serious and common injuries is that of the anterior cruciate ligament (ACL), typical in football and skiing, but also in other sports where sudden turns, violent contacts and twists of the knee can take place. The rupture of this ligament is relatively frequent and, for professional sportspersons, may mean being out of competition sport for between six to eight months, with the social and economic repercussion that this entails. If the lesion is total – with a complete break of the ligament - the usual surgery has to be undertaken involving the graft from another ligament or tendon to replace the injured tissue. This has to be followed by long months of recovery until the new graft has acquired a suitable consistency and transforms into a new ACL.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>