Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning to fight an adversary that won’t stay down

22.02.2005


New biomolecular technologies have largely failed to deliver the hoped-for knockout punch breakthrough against the defences of disease-causing bacteria, says a leading Canadian specialist in antibiotic resistance.



Techniques such as genomic sequencing and high throughput screening were expected to make the development of new antibiotic compounds easier and more productive. But in most cases the microbes continue to hold the upper hand – and if three billion years of bacterial history is any kind of track record, we’re in for an endless running battle, says Dr. Julian Davies, a microbiologist at the University of British Columbia.

"We haven’t evolved in our thinking sufficiently to be able to match the microbes," says Dr. Davies, Scientific Director of the Canadian Bacterial Diseases Network. "Pharmaceutical companies and other researchers have put hundreds of millions of dollars into ’modern’ approaches to antibiotic discovery over the past six or seven years and this has failed miserably."


The scientist, whose work is supported by Science and Engineering Research Canada (NSERC), has organized a symposium on the evolutionary genetics of antibiotic resistance at the 2005 meeting of the American Association for the Advancement of Science in Washington D.C.

The ongoing appearance of new pathogen varieties like multi-resistant E. coli and Staphylococcus aureus (MRSA), the bacterium that causes methicillin-resistant tuberculosis, provide good examples of the challenges we face, says Dr. Davies.

Ironically, he says, advances in molecular biology techniques have shown just how adept these pathogens are at adapting to anything we can throw at them. Innovations such as highly efficient polymerase chain reaction (PCR) have made it possible to identify and study the many genes responsible for antibiotic resistance in hospitals and the environment.

"What has been found is that there are more antibiotic resistance genes around than we ever realized," says Dr. Davies. "There are more than 300 genes now known that confer resistance to one or more antimicrobials. And they keep coming."

However, the mapping of bacterial genomes has not yet helped yield solutions to the problem, says Dr. Davies.

He adds that our understanding of the activity of microbes must extend beyond the newspaper headlines reporting outbreaks of these "superbugs," so that we can put the role of these organisms in the proper evolutionary perspective. This subject, and antibiotic resistance in particular, has fascinated Davies since he began postdoctoral work on antibiotics and resistance mechanisms at Harvard Medical School in the early 1960s.

"The microbes are evolving genetically, and the pharmaceutical companies are evolving chemically; the two don’t match," says Dr. Davies, adding that doctors who deal with microbial diseases in hospitals must remain cautious about exposing the bacterial pathogens to the newest and most effective drugs so as to avoid overuse and the accompanying onset of resistance.

"There are a relatively small number of antibiotics that have come out that are new, and some of them are very potent and act against most resistant strains," he says. "But the clinicians rightly try to keep these things in reserve for when they are really needed."

Dr. Davies’ AAAS Presentation
Microbial Genetic Jugglery: How Bacteria Became Antibiotic Resistant
Sunday February 20, 2005
10:30 a.m. - 12:00 p.m.

Dr. Julian Davies | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Health and Medicine:

nachricht Researchers image atomic structure of important immune regulator
11.12.2018 | Brigham and Women's Hospital

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>