Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of specific collagen type leads to osteoarthritis

21.02.2005


Duke University Medical Center researchers have found that joints whose cartilage lacks a specific type of collagen will develop osteoarthritis – the so-called "wear-and-tear" form of the disease – at a greatly accelerated rate.



The results of their experiments with mice provide new insights that could lead to potential treatments for a disease that afflicts more than 40 million Americans, said the researchers.

The researchers found that mice lacking the gene that controls the production of type VI collagen developed osteoarthritis at a rate more than five times greater than mice with a functioning gene. Collagen is a ubiquitous protein found throughout the body in connective tissue, muscle, cartilage and bone. To date, 27 different types have been identified.


To examine structures within the cartilage of mouse joints, Leonidas Alexopoulos, Ph.D., developed a novel "micro-vacuuming" technique. With this device, Alexopoulos extracted key structures within the cartilage of mouse hip joints, which are the size of the ball in a ball-point pen, and analyzed how they responded to the stresses of everyday life.

Alexopoulos presented the results of the Duke study Feb. 20, 2005, at the 51th annual scientific meeting of the Orthopedic Research Society in Washington, D.C. Alexopoulos, now a post-doctoral fellow at the Massachusetts Institute of Technology, conducted the research in the laboratory of Farshid Guilak, Ph.D., director of orthopedic research and senior member of the Duke team. The study was funded by the National Institutes of Health.

The researchers focused their attention on the narrow region of tissue that surrounds the cartilage cells on the surface of joints and is known as the pericellular matrix (PCM). Together with cartilage cells known as chondrocytes, collagen types II, VI and IX, and other proteins, the PCM forms a structure called a chondron, which is believed to provide a "buffer" zone between the cells and the remainder of the cartilage tissue.

"The interesting thing is that type VI collagen occurs nowhere else in the cartilage but the PCM, and no one really understood why," Alexopoulos explained. "When we analyzed the PCM of mice unable to produce type VI collagen, we found that the chondrons in these mice were much softer and the joints did not respond well to mechanical pressures. The joint looked as if it osteoarthritis had developed.

"It appears now that the type VI collagen acts like a scaffold that provides structure and stiffness to the PCM," Alexopoulos continued. "With this model for osteoarthritis, we have a better understanding of how changes in the mechanical forces on the cells may lead to degeneration of the cartilage."

For their experiments, the team compared how chondrons changed over time in three different groups of mice: one group had functioning type VI collagen genes, while the two other groups were strains of "knockout" mice developed by Paolo Bonaldo, University of Padova, Italy. One group of mice had both parents with the type VI collagen gene knocked out, while the other group had only one parent without the gene. After six months, the researchers removed chondrons to determine how they responded.

"We found significant osteoarthritic and developmental differences among the three groups," Alexopoulos said. Specifically, 73 percent of the mice with two knock-out parents showed evidence of mild to severe osteoarthritis. This compared to 40 percent for mice with one knock-out parent and 13 percent for the control mice.

"These findings represent an important advance in our understanding of osteoarthritis," Guilak said. "The study provides direct evidence of the role of type VI collagen in the biomechanical properties of the PCM. While the mechanism behind the accelerated development of osteoarthritis is not yet clear, it suggests that the lack of type VI collagen negatively impacts the ability of the cartilage to respond properly to the mechanical stresses and pressures on the joint."

The experiments would not have been possible without the custom-built "microaspirator," which could extract individual, intact chondrons. Other methods of isolating chondrons, which either involve dissolving surrounding tissues with harsh enzymes or grinding the cartilage in pieces, typically yield damaged chondrons, Alexopoulos said.

"Using a tiny syringe, I was able to go across the surface of the cartilage and vacuum up the chondrons without damaging them," Alexopoulos said. "The chondrons literally popped out of the cartilage and into the syringe. From that point, it was easy to analyze their structure."

It is estimated that more than 70 percent of Americans over the age of 65 show some signs of osteoarthritis, which is characterized by the slow degeneration of the buffering layer of cartilage within joints. The other major form of arthritis, rheumatoid arthritis, occurs when the body’s immune system attacks the linings of joints.

Guilak currently leads of group of clinicians and investigators from Duke and the Durham VA Medical Center who are carrying out a broad range of basic and clinical research into better understanding and treating osteoarthritis.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>