Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain controls robot arm in monkey

18.02.2005


Research represents big step toward development of brain-controlled artificial limbs for people



Reaching for something you want seems a simple enough task, but not for someone with a prosthetic arm, in whom the brain has no control over such fluid, purposeful movements. Yet according to research presented at the 2005 American Association for the Advancement of Science (AAAS) Annual Meeting, scientists have made significant strides to create a permanent artificial device that can restore deliberate mobility to patients with paralyzing injuries. The concept is that, through thought alone, a person could direct a robotic arm – a neural prosthesis – to reach and manipulate a desired object.

As a step toward that goal, University of Pittsburgh researchers report that a monkey outfitted with a child-sized robotic arm controlled directly by its own brain signals is able to feed itself chunks of fruits and vegetables. The researchers trained the monkey to feed itself by using signals from its brain that are passed through tiny electrodes, thinner than a human hair, and fed into a specially designed algorithm that tells the arm how to move. "The beneficiaries of such technology will be patients with spinal cord injuries or nervous system disorders such as amyotrophic lateral sclerosis or ALS," said Andrew Schwartz, Ph.D., professor of neurobiology at the University of Pittsburgh School of Medicine and senior researcher on the project.


The neural prosthesis moves much like a natural arm, with a fully mobile shoulder and elbow and a simple gripper that allows the monkey to grasp and hold food while its own arms are restrained. Computer software interprets signals picked up by tiny probes inserted into neuronal pathways in the motor cortex, a brain region where voluntary movement originates as electrical impulses. The neurons’ collective activity is then fed through the algorithm and sent to the arm, which carries out the actions the monkey intended to perform with its own limb.

The primary motor cortex, a part of the brain that controls movement, has thousands of nerve cells, called neurons, that fire like Geiger counters. These neurons are sensitive to movement in different directions. The direction in which a neuron fires fastest is called its "preferred direction." For each arm movement, no matter how subtle, thousands of motor cortical cells change their firing rate, and collectively, that signal, along with signals from other brain structures, is routed through the spinal cord to the different muscle groups needed to generate the desired movement.

Because of the sheer volume of neurons that fire in concert to allow even the most simple of movements, it would be impossible to create probes that could eavesdrop on them all. The Pitt researchers overcame that obstacle by developing a special algorithm that uses the limited information from relatively few neurons to fill in the missing signals. The algorithm decodes the cortical signals like a voting machine by using each cell’s preferred direction as a label and taking a continuous tally of the population throughout the intended movement.

Monkeys were trained to reach for targets. Then, with electrodes placed in the brain, the algorithm was adjusted to assume the animal was intending to reach for those targets. For the task, food was placed at different locations in front of the monkey, and the animal, with its own arms restrained, used the robotic arm to bring the food to its mouth. "When the monkey wants to move its arm, cells are activated in the motor cortex," said Dr. Schwartz. "Each of those cells activates at a different intensity depending on the direction the monkey intends to move its arm. The direction that produces the greatest intensity is that cell’s preferred direction. The average of the preferred directions of all of the activated cells is called the population vector. We can use the population vector to accurately predict the velocity and direction of normal arm movement, and in the case of this prosthetic, it serves as the control signal to convey the monkey’s intention to the prosthetic arm."

Because the software had to rely on a small number of the thousands of neurons needed to move the arm, the monkey did the rest of the work, learning through biofeedback how to refine the arm’s movements by modifying the firing rates of the recorded neurons.

In recent weeks, Dr. Schwartz and his team were able to improve the algorithms to make it easier for the monkey to learn how to operate the arm. The improvements also will allow them to develop more sophisticated brain devices with smooth, responsive and highly precise movement. They are now working to develop a prosthesis with realistic hand and finger movements. Because of the complexity of a human hand and the movements it needs to make, the researchers expect it to be a major challenge.

Others involved in the research include Meel Velliste, Ph.D., a Pitt post-doctoral fellow in the Schwartz lab, and Chance Spalding, a Pitt bioengineering graduate student; and Anthony Brockwell, Ph.D., Valerie Ventura, Ph.D., Robert Kass, Ph.D., and graduate student Cari Kaufman from the Statistics Department at Carnegie Mellon University.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>