Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides insights on why some prostate cancer becomes resistant to hormone withdrawl therapy

26.01.2005


A new study by scientists at Fred Hutchinson Cancer Research Center provides insight into why some men develop aggressive prostate cancer that becomes resistant to hormone-withdrawal therapy, a common form of treatment.



Researchers found that certain mutations in a protein called the androgen receptor cause advanced and invasive prostate cancer when put into otherwise healthy mice. The androgen receptor’s normal function is to control growth of the prostate gland in response to cues from male hormones called androgens, which have long been thought to stimulate prostate tumors.

Because similarly defective androgen receptors have been found in prostate-cancer patients whose disease is resistant to hormone withdrawal, the finding sheds light on why most men with advanced prostate cancer treated with hormone-withdrawal therapy fail to be cured. The work opens the door to discovery of new, more effective therapies, according to Norman Greenberg, Ph.D., a member of Fred Hutchinson’s Clinical Research Division.


The study is published in the Jan. 25, 2005 issue of the Proceedings of the National Academy of Sciences. The study was led by Dr. Guangzhou Han and colleagues.

Greenberg said that despite these and other earlier findings indicating a strong relationship between the androgen receptor and prostate cancer, no group had proved that it could be a key driver of disease. "Our study is the first to demonstrate that if the androgen receptor acquires certain mutations, it can cause prostate cancer in otherwise healthy mice," he said. "Because very similar mutations have been found in androgen receptors from prostate-cancer patients whose disease is resistant to hormone-withdrawal therapy, we think this is a very significant finding."

The results suggest that prostate-cancer prevention trials involving drugs that lower a man’s androgen levels should proceed cautiously, since complete androgen withdrawal seems to provide an environment that favors the development of the cancer-causing mutations. In addition, the work is the first to show that a class of proteins called steroid receptors, of which the androgen receptor is a member, can become cancer-causing genes known as oncogenes. The estrogen and progesterone receptors--two receptors that become defective in many breast cancers--are also members of this protein family.

The androgen receptor is a protein produced by prostate cells that binds to androgens, a family of chemically related hormones that includes testosterone. Although the binding of androgens to the receptor is important for healthy prostate development, the hormones may, under some conditions, stimulate the prostate-tumor cells to divide. For that reason, many men with advanced prostate cancer are treated with drugs that either block the production of androgens or the ability of the androgens to interact with their receptor.

About 90 percent of the time, prostate tumors shrink after hormone deprivation, but in most cases, it is believed that a small percentage of the tumor cells become resistant. Eventually, these resistant cells grow to become the predominant cancer, and no successful therapies have yet been developed for men with the hormone-withdrawal-resistant form of the disease.

In their study, researchers identified several mutations that impair the ability of the androgen receptor to interact with proteins called co-regulators. Co-regulators help the receptor to carry out its functions at the proper time; therefore, lack of interaction between the receptor and the appropriate co-regulators is thought to spur cancer development. Analogous mutant receptors also have been found in human prostate cancers.

Researchers wondered what would happen if they put the mutant receptors into otherwise healthy mice that also contained a normal version of the androgen receptor. They found that 100 percent of the time, the addition of one particular mutant receptor cause rapid development of a precancerous condition that progressed to advanced disease. In contrast, mice with extra copies of a normal receptor, as well as mice with the normal receptor and an unrelated type of mutant receptor, did not cause cancer.

"This demonstrates a causal role for certain androgen receptor mutations in prostate cancer," Greenberg said. Not all men with hormone-withdrawal-resistant disease develop such mutations, Greenberg said. Yet hormone-deprivation treatment can create a situation in some prostate tumors in which such mutations give a growth advantage to cancer cells.

Such mutant receptors might prove to be good drug targets, Greenberg said.

"These and other mutant forms of the receptor should be potential targets for new drugs that will be particularly effective in men whose cancers have these mutations and related events," he said. Because androgen deprivation has numerous side effects--including bone loss and sexual dysfunction--drugs that specifically attack the cancer-causing protein would be much more desirable than existing therapies. Drugs that effectively work against certain mutant proteins have been developed for other cancers, including Iressa for lung cancer and Gleevec for chronic myeloid leukemia.

Since the mutations Greenberg’s lab studied appear to affect one specific function of the androgen receptor, it may also be possible to develop drugs that target other proteins that collaborate with the androgen receptor in this pathway. Greenberg’s lab is now studying this pathway, with the hope of providing more insight into the drug discovery process.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>