Antibody treatment partially reverses nerve damage in Alzheimer disease

Researchers from Washington University School of Medicine have shown that an antibody treatment administered to the brain surface in mice with Alzheimer disease is capable of rapidly reversing disease-related structural nerve damage. The study will appear online on January 20 in advance of print publication in the February 1 issue of the Journal of Clinical Investigation.

One of the many hallmarks of Alzheimer disease is the presence of deposits or “plaques” made up of amyloid-beta peptide (Abeta) in areas of the brain responsible for memory and cognition. While several approaches to decreasing Abeta production or increasing its clearance from the brain are being studied as potential treatments for Alzheimer disease, it is not known whether, upon clearance of Abeta, if significant structural damage to nerves is reversed, remains, or continues.

Using a mouse model of Alzheimer disease in which a subset of neurons and Abeta in the mouse brain express colored fluorescent proteins that can be visualized in the living animal under a microscope, David Holtzman and colleagues administered an anti- Abeta antibody treatment and monitored the structural changes to nerves within the mouse brains. They observed that following treatment of the brain surface, there was a significant decrease in the amount of structural nerve damage after only 3 days. The study suggests that Abeta deposition leads to ongoing nerve damage and that upon reducing buildup of Abeta in the brain, this structural damage is rapidly reversible.

The imaging technique used will also be a valuable tool for the study of the progression of Abeta deposition in the brain during experimental models of Alzheimer disease and to also assess the effectiveness of treatments including the anti-Abeta antibody treatment described here.

Media Contact

Brooke Grindlinger EurekAlert!

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors