Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers find evidence that progesterone signaling influences ovarian cancer risk

05.01.2005


A woman’s risk of ovarian cancer rises significantly if she carries either of two previously unexamined variations in the gene that codes for the progesterone receptor, according to a team of researchers led by scientists from the Keck School of Medicine of the University of Southern California.



The study, which is being published in the January 5th issue of the Journal of the National Cancer Institute, was initially supposed to be a more in-depth look at one particular version-or allele-of the progesterone receptor gene (PGR). The PROGINS allele, says Celeste Leigh Pearce, a preventive medicine researcher from the USC/Norris Comprehensive Cancer Center and the paper’s first author, had previously been linked to a higher ovarian cancer risk as well as a lower breast cancer risk in women who carry it.

To see if the PROGINS allele did indeed confer a higher ovarian cancer risk on women, the researchers-led by the study’s principal investigator, USC preventive medicine professor Malcolm Pike-first used biological samples collected by the Hawaii/Los Angeles Multiethnic Cohort Study. (The Multiethnic Cohort is one of the largest ongoing population studies in the world, and is led by Brian E. Henderson, M.D., the Kenneth T. Norris Jr. Chair in Cancer Prevention and dean of the Keck School of Medicine.) The scientists examined the variety of genetic variations found in the PGR gene as part of a long-term collaboration between USC researchers and those at the Broad Institute in Cambridge, MA, looking to ascertain if the PROGINS allele held a particular risk of ovarian cancer for women.


The results, Pearce notes, showed that it likely does. But at the same time, they noticed something even more interesting. The data they collected showed that the biggest influence on ovarian cancer risk from that region of the gene came not from the single PROGINS allele, but rather from two haplotypes found in the same region, one of which actually contains the PROGINS allele. (A haplotype is a set of alleles on a chromosome that are closely linked together, and which are usually passed down as a single unit.)

In fact, the two haplotypes-dubbed simply 4-D and 4-E-were found to raise ovarian cancer risk by almost 3.5-fold in women who carry two copies of either haplotype, or one of each. Not only were these two particular haplotypes found to be part of the story, but they were found to overshadow the role of the PROGINS allele.

How can subtle changes in a progesterone receptor gene lead to an elevated risk of this uncommon, yet exceedingly deadly, form of cancer in women remains to be fully spelled out.

What scientists do know, however, is that progesterone appears to protect women from the disease, while increasing their risk of breast cancer. And so it seems likely that subtle changes in the progesterone receptor, which is the first step in the signaling pathway by which the progesterone hormone does its job, might decrease the receptor’s efficiency, muting progesterone’s signal and reducing its influence on the body’s cells. And that, in turn, might very well lead to ovarian cancer.

Of course, proving that theory will take time and further studies, notes Pearce. But, by that same token, it would likely provide invaluable information, and possibly new therapeutic options as well.

"If our findings with respect to ovarian cancer are replicated in other studies, this would provide important evidence that direct modulation of progesterone signaling influences cancer risk," the researchers note. "Understanding how this variation influences risk of ovarian cancer should give further insight into ways this difficult-to-diagnose disease could be prevented in the future."

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>