Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model simulates dynamics of heart rhythm disorders

17.12.2004


Dutch researcher Kirsten ten Tusscher has developed a model that can simulate the electrical behaviour of the heart during heart rhythm disorders. One of the things her model revealed is that the electrical activity of the heart during a rhythm disorder is much less chaotic than was originally thought.

Kirsten ten Tusscher first of all made a model that described the electrical behaviour of individual human heart muscle cells. She demonstrated that the behaviour of this model corresponded well with results from experiments on human heart cells. The source code of this cell model is freely available on Internet.

The researcher then used her new model to simulate the behaviour of 13.5 million individual grid points, which together form the anatomy of a human heart. As the model is extremely large and requires a considerable amount of calculating power, she used the TERAS supercomputer of the SARA and a mini-Beowulf cluster in her own department. With this she studied the behaviour of electrical wave patterns during certain rhythm disorders in the human heart.



Heart rhythm disorders are abnormalities in the timing, sequence and coordination of how the heart muscle contracts. These vary in seriousness from palpitations though to disorders that are fatal within minutes. Heart rhythm disorders are one of the most frequent causes of death.

Ten Tusscher focused on two rhythm disorders. In ventricular tachycardia, the heart ventricles contract more frequently than normal. Less blood flows out of the ventricles and the supply of oxygen to the body is reduced. In ventricular fibrillation, the ventricles no longer contract coherently. Due to the reduced pumping action, almost no blood leaves the ventricles. As a result, the body hardly receives any more oxygen and death ensues within minutes.

Spiral-shaped electrical waves rotating at a high frequency can result in a more rapid contraction of the heart. Ventricular fibrillation is caused by spiral waves degenerating into a chaotic pattern of many small waves. Ten Tusscher demonstrated that in a healthy heart, stable three-dimensional spiral waves arise after the administration of several large electrical impulses. Under modified model conditions, the same electrical impulses were found to result in degenerating spiral waves that lead to fatal fibrillation.

Furthermore, the theoretical biologist discovered that during fibrillation, only about six of these spiral waves are present in the heart, whereas it had previously been assumed that this number lay somewhere between 40 and 110. This means that the wave dynamics during fibrillation are much less chaotic than was previously thought.

Kirsten ten Tusscher’s project was funded by the Netherlands Organisation for Scientific Research (NWO) and formed part of the NWO programme ’Non-Linear Systems’. NWO sponsored a mini-symposium in conjunction with Kirsten ten Tusscher’s defence of her doctoral thesis.

Dr Kirsten ten Tusscher | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_66ND5L_Eng
http://www.nwo.nl

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>