Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New effects of an antihistaminic against cerebral injury

17.12.2004


Ranitidine could become new treatment for cerebral ischemia

Ranitidine, a widely used substance used as an antihistaminic drug against gastric ulcers, may become a new treatment for cerebral ischemia caused by craneoencephalic infarcts or traumatisms, the third leading cause of deaths in industrialised countries. In experiments with a model of cerebral ischemia using rats, a team from the Institute of Neurosciences of the Universitat Autònoma de Barcelona (Spain) has observed how the presence of ranitidine reduces neuronal death by a quarter. The substance reaches its maximum effect six hours after the lesion has occurred, which will facilitate treatment in real cases with humans.

The scientists of the Institute of Neurosciences at the UAB have studied ranitidine’s effects on an experimental model using neurons from rats’ brains. The cells underwent a lack of oxygen and glucose analogous to that which they suffer, within the brain, when there is a lack of blood flow (what happens when there is a cerebral ischemia) caused by an infarct or a traumatism. When a lesion of this type occurs, the cells either die directly or, in many cases, they becomes victims of a slow programmed death called apoptosis, a kind of "suicide" at a cellular level.



The researchers observed that ranitidine acts preferentially on the neurons that are in the process of apopotosis, and conclusively reduces the percentage of cells that die. Even when treatment is initiated six hours after the lack of oxygen and glucose, and maintaining it over a 24-hour period, this substance reduces by a quarter the number cells that die with respect to the number of cells that die when there is no treatment.

The fact that in the laboratory studies ranitidine’s activity was optimal when administered hours after the lack of oxygen and glucose is highly important when looking towards a future use as treatment for cerebral ischemia in humans, in that, obviously, therapeutic treatments always take place after the time of the infarct or traumatism.

The authors of the research, recently published in Stroke magazine, affirm that the most immediate challenge is to verify the efficacy of the substance in in vivo experimental models of cerebral ischemia, because they have obtained good preliminar results with alive rats. Ranitidine is already widely used as a drug for treating gastric ulcers, which will accelerate the step towards clinical trials on humans. In fact, the researchers are already designing these clinical trails with associated universitary hospitals (Hospital Vall Hebron and Hospital de Sant Pau, in Barcelona).

The researchers also point out the need to work on designing new chemical compounds based on ranitidine that facilitate its administration, because the substance has difficulty moving from the blood flow to the brain. That is not an impediment in hospital interventions, as it can be administered directly to the brain, but to facilitate treatment it will be necessary to find a way in which the drug can be administered by oral route.

The following people participated in the research: Cristina Malagelada, Josefa Sabrià, José Rodríguez, Xavier Xifró and Nahuai Badiola. They are all researchers at the Institute of Neurosciences and of the Biochemical Unit (Faculty of Medicine) of the Department of Biochemistry and of Molecular Biology at the UAB.

Octavi López Coronado | EurekAlert!
Further information:
http://www.uab.es

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>