Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular test predicts risk of breast cancer recurrence and who will benefit from chemotherapy

13.12.2004


A new test can predict both the risk of breast cancer recurrence and may identify women who will benefit most from chemotherapy, according to research supported by the National Cancer Institute (NCI), part of the National Institutes of Health, and performed in collaboration with the National Surgical Adjuvant Breast and Bowel Project (NSABP) and Genomic Health Inc. These results suggest that almost half of over 50,000 U.S. women diagnosed with estrogen-dependent, lymph-node negative breast cancer* every year are at low risk for recurrence and may not need to go through the discomfort and side effects of chemotherapy.

The test is based on levels of expression (increased or decreased) of a panel of cancer-related genes. This panel is used to predict whether estrogen-dependent breast cancer will come back, according to a study that will be published online in the New England Journal of Medicine on Friday, December 10, 2004**. Scientists on this study also will present new results on that day at San Antonio Breast Cancer Symposium indicating that the same test can predict which women benefit most from chemotherapy. Women with low risk of breast cancer recurrence--about half of the women in the recent study--do not appear to derive much benefit from chemotherapy.
The researchers used tissue samples and medical records from women enrolled in clinical trials of the cancer drug tamoxifen, which blocks the effect of estrogen on breast cancer cells. These women had a kind of breast cancer defined as estrogen receptor-positive, lymph node-negative. Each year, over 50,000 women are diagnosed with this kind of breast cancer, which needs estrogen to grow but has not spread to the lymph nodes. Currently, many women with this type of breast cancer in the United States do receive chemotherapy in addition to hormonal therapy.


Using samples from 447 patients and a collection of 250 genes in three independent preliminary studies, 16 cancer-related genes were found that worked best. The scientists created a formula that generates a "recurrence score" based on the expression patterns of these genes in a tumor sample. Ranging from 1 to 100, the recurrence score is a measure of the risk that a given cancer will recur***.

Prior to this research, analysis of the expression of genes was performed on tumor specimens that were frozen rather than on tissue prepared for routine pathologic evaluation (fixed and embedded). The expression analysis depended on measurement of RNA (the molecule necessary for the translation of a gene into a protein), and RNA is altered when tissues are fixed and embedded. Frozen tissues are generally not readily available in routine practice. Researchers at Genomic Health Inc. developed a method for performing these analyses on tissues embedded in paraffin wax. Their method allows them to use the altered RNA that is found in fixed tissue.

The results published in the New England Journal of Medicine validate the ability of the recurrence score to predict risk of recurrence. Using biopsy tissue and medical records from another NSABP tamoxifen trial, researchers divided 668 women into low, intermediate, and high risk of recurrence groups. Fifty-one percent were in the low risk group (with a score of less than 18); 22 percent were at intermediate risk (recurrence score 18 or higher but less than 31); 27 percent were at high risk (a score of 31 or higher).

These risk group divisions correlated well with the actual rates of recurrence of breast cancer after 10 years. There was a significant difference in recurrence rates between women in the low and high risk groups. In the low risk group, there was a 6.8 percent rate of recurrence at 10 years; in the intermediate and high risk categories these rates were 14.3 percent and 30.5 percent, respectively. Up to a recurrence score of 50, rates of recurrence increased continuously as the recurrence score increased. These trends held across age groups and tumor size. "These results were generated perhaps a decade earlier than would have been possible if the researchers had not had access to biopsy tissue from the NSABP trials," notes Sheila E. Taube, Ph.D., associate director of NCI’s Cancer Diagnosis Program.

The same 21-gene test has also been used to predict how beneficial chemotherapy will be for women with estrogen receptor-positive, lymph node-negative breast cancer for women on tamoxifen in NSABP trials. These results will be presented at the San Antonio Breast Cancer Symposium on December 10, 2004. "NCI staff worked with the company, NSABP and experts from other NCI Cooperative Groups to develop an overall strategy; this plan was fruitful and may lead to providing an important tool for physicians and women to use in considering breast cancer treatment decisions," said Taube.

In the treatment study, women with high recurrence scores, who are representative of about 25 percent of patients with this kind of breast cancer, had a large benefit from chemotherapy in terms of 10 year recurrence-free rates. Women with low recurrence scores, who represent about 50 percent of these patients, derived minimal benefits from chemotherapy. The group under study was not large enough to determine whether chemotherapy is detrimental to the low risk group.

"The test has the potential to change medical practice by sparing thousands of women each year from the harmful short- and long-term side effects associated with chemotherapy," said JoAnne Zujewski, M.D., senior investigator in NCI’s Cancer Therapy Evaluation Program.

*Tumor size can affect the estimate of the number of women diagnosed with this type of cancer. This estimate is based on tumors larger than 1 centimeter and smaller than 5 centimeters.

**Print version: Paik S, Shak S, Wolmark N, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. New England Journal of Medicine, 351(27). December 30, 2004.

***This technology is called the Oncotype DXTM.

NCI Press Officers | EurekAlert!
Further information:
http://www.cancer.gov

More articles from Health and Medicine:

nachricht The cytoskeleton of neurons has been found to be involved in Alzheimer's disease
18.01.2019 | University of the Basque Country

nachricht Bioinspired nanoscale drug delivery method developed by WSU, PNNL researchers
10.01.2019 | Washington State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>