Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worming a way into ‘pleasurable’ endoscopy

08.12.2004


Endoscopy can be a deeply uncomfortable experience. Improving matters, BIOLOCH researchers are attempting to apply the motion techniques used by lower animal forms to endoscopy technology to develop a prototype capable of ‘pulling’ itself into a patient’s internals, rather than being pushed as it is now.

Having a tube pushed inside you, no matter how small or how sensitively applied, is not a procedure anyone would want to repeat. Plus there is always the risk of tearing delicate internal organs. Not so surprising, therefore, that the potential for a successful alternative could be very high.

The BIOLOCH IST project is using the ragworm or paddleworm, as commonly found on the seashore as their model for an endoscope-type prototype instrument.



Imitating the paddleworm

“The basic concept is to develop a replacement for the current colonic endoscope, which is quite large and stiff, and has to be pushed inside a patient,” says Paolo Dario, from the Scuola Superiore Sant’Anna of Pisa (Italy). “If you can pull a device rather than push it, you can reduce the bending forces and so lessen the chance of damage to a patient’s internal organs. We looked to nature for a model and chose the paddleworm, because it is capable of ‘swimming’ with ease through relatively soft, unstructured environments.”

BIOLOCH’s first step was to study the locomotion mechanisms used by these animals, which move in wet environments containing large amounts of solid and semi-solid material. Researchers also examined the mechanisms of attachment used by parasites, both internal and external, in order to understand how they gained purchase on soft tissue.

The project’s objective is to understand the motion systems used by such lower animal forms, and to design and fabricate mini- and micro-machines inspired by such biological systems. Such bio-inspired machines have potential applications in many fields where direct human intervention is difficult or dangerous, and remote inspection is required.

Paddling forwards

The project’s initial prototype consists of a simple worm with a flexible central spine and paddles sticking out either side along the worm’s body. Researchers are now working on a more advanced prototype in which the paddles themselves are capable of moving. To this end the team has had to recruit a biologist to examine how the worms move, and explain these movements to the engineers so that they can work out how to actuate and control the mechanical worm.

Julian Vincent from the University of Bath (UK) explains that paddleworms have a very different way of moving compared to earthworms. The paddleworm’s sine wave locomotion technique runs forward along the body rather than backwards as is the case with the earthworm.

“If you take a wriggly worm with a smooth body, the sine wave moves backwards as the worm moves forwards. But if you put paddles on which stick out to the side of the body, the physics of thrust production changes and the sine wave has to move forwards. The advantage from our point of view is that the paddle worm has a much greater variety of styles of moving, since it can remain straight and just move the paddles, wriggle and keep the paddles still, or wriggle and move the paddles as well. This gives more versatility in speed and general control. The paddle worm can also build burrows very rapidly. So the chances are that a robotic motor based on this design will be more versatile and faster than most others.’

Making endoscopy pleasurable!

At the moment the prototypes are rather slow. Current medical procedure for endoscopies allows around only 10 minutes to reach the end of the colon. Says Dario, “Our worm takes about thirty minutes to cover a comparable distance, so it needs to be speeded up by a factor of ten to fifty. However if we can get the paddles to move as well as the central spine, this should double the energy delivered during the power stroke, so we aim to improve the speed by a factor of ten.”

An early prototype of the BIOLOCH worm is already on display at an exhibition on biomimetics at the Zoological Museum in Copenhagen, Denmark, which continues until early 2005. However, the BIOLOCH team intend to have the second, more advanced prototype, which will have a smaller diameter and be more flexible, ready and working by the end of the project in mid-2005.

“Ultimately”, says Vincent, “our idea is to turn the current ordeal of the colonic endoscopy procedure into something akin to a pleasurable experience!”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>