Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worming a way into ‘pleasurable’ endoscopy

08.12.2004


Endoscopy can be a deeply uncomfortable experience. Improving matters, BIOLOCH researchers are attempting to apply the motion techniques used by lower animal forms to endoscopy technology to develop a prototype capable of ‘pulling’ itself into a patient’s internals, rather than being pushed as it is now.

Having a tube pushed inside you, no matter how small or how sensitively applied, is not a procedure anyone would want to repeat. Plus there is always the risk of tearing delicate internal organs. Not so surprising, therefore, that the potential for a successful alternative could be very high.

The BIOLOCH IST project is using the ragworm or paddleworm, as commonly found on the seashore as their model for an endoscope-type prototype instrument.



Imitating the paddleworm

“The basic concept is to develop a replacement for the current colonic endoscope, which is quite large and stiff, and has to be pushed inside a patient,” says Paolo Dario, from the Scuola Superiore Sant’Anna of Pisa (Italy). “If you can pull a device rather than push it, you can reduce the bending forces and so lessen the chance of damage to a patient’s internal organs. We looked to nature for a model and chose the paddleworm, because it is capable of ‘swimming’ with ease through relatively soft, unstructured environments.”

BIOLOCH’s first step was to study the locomotion mechanisms used by these animals, which move in wet environments containing large amounts of solid and semi-solid material. Researchers also examined the mechanisms of attachment used by parasites, both internal and external, in order to understand how they gained purchase on soft tissue.

The project’s objective is to understand the motion systems used by such lower animal forms, and to design and fabricate mini- and micro-machines inspired by such biological systems. Such bio-inspired machines have potential applications in many fields where direct human intervention is difficult or dangerous, and remote inspection is required.

Paddling forwards

The project’s initial prototype consists of a simple worm with a flexible central spine and paddles sticking out either side along the worm’s body. Researchers are now working on a more advanced prototype in which the paddles themselves are capable of moving. To this end the team has had to recruit a biologist to examine how the worms move, and explain these movements to the engineers so that they can work out how to actuate and control the mechanical worm.

Julian Vincent from the University of Bath (UK) explains that paddleworms have a very different way of moving compared to earthworms. The paddleworm’s sine wave locomotion technique runs forward along the body rather than backwards as is the case with the earthworm.

“If you take a wriggly worm with a smooth body, the sine wave moves backwards as the worm moves forwards. But if you put paddles on which stick out to the side of the body, the physics of thrust production changes and the sine wave has to move forwards. The advantage from our point of view is that the paddle worm has a much greater variety of styles of moving, since it can remain straight and just move the paddles, wriggle and keep the paddles still, or wriggle and move the paddles as well. This gives more versatility in speed and general control. The paddle worm can also build burrows very rapidly. So the chances are that a robotic motor based on this design will be more versatile and faster than most others.’

Making endoscopy pleasurable!

At the moment the prototypes are rather slow. Current medical procedure for endoscopies allows around only 10 minutes to reach the end of the colon. Says Dario, “Our worm takes about thirty minutes to cover a comparable distance, so it needs to be speeded up by a factor of ten to fifty. However if we can get the paddles to move as well as the central spine, this should double the energy delivered during the power stroke, so we aim to improve the speed by a factor of ten.”

An early prototype of the BIOLOCH worm is already on display at an exhibition on biomimetics at the Zoological Museum in Copenhagen, Denmark, which continues until early 2005. However, the BIOLOCH team intend to have the second, more advanced prototype, which will have a smaller diameter and be more flexible, ready and working by the end of the project in mid-2005.

“Ultimately”, says Vincent, “our idea is to turn the current ordeal of the colonic endoscopy procedure into something akin to a pleasurable experience!”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>