Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-Fisted Assault on Dopamine Transport System May Be Foundation of Parkinson’s Disease

06.12.2004


Protecting microtubule "highways" may lead to novel therapies, study shows



Parkinson’s disease may be caused by an environmental-genetic double whammy on the neurons that produce dopamine, the neurotransmitter that controls body movement, a new study has shown.

Researchers at the University at Buffalo, using cultures of rat neurons, have shown that the presence of mutated parkin genes, combined with the toxic effects of the chemical rotenone, results in a cascade of highly toxic free radicals, the destruction of microtubules that transport dopamine to the brain’s movement center, and eventual death of the dopamine-producing neuron.


"This study shows how an environmental toxin and a gene linked to Parkinson’s disease affect the survival of dopamine neurons by dueling on a common molecular target -- microtubules -- that are critical for the survival of dopamine-producing neurons," said Jian Feng, Ph.D., assistant professor of physiology and biophysics in UB School of Medicine and Biomedical Sciences and senior author. "Based on these findings, we have identified several ways to stabilize microtubules against the onslaught of rotenone. These results ultimately may lead to novel therapies for Parkinson’s disease."

Results of the research will be presented Dec. 5 at the American Society for Cell Biology meeting in Washington D.C.

Researchers who study Parkinson’s disease know that persons with a mutation in the parkin gene are at risk for the disease, and that exposure to agricultural chemicals, including rotenone, cause Parkinson’s-like symptoms in animals. In addition, long-term epidemiological studies of Parkinson’s disease patients have shown a strong link between exposure to pesticides/herbicides and increased risk of developing the disease, Feng noted.

Earlier research by several groups has shown that rotenone destroys only neurons that produce dopamine, while largely sparing neurons that produce other neurotransmitters. Dr. Feng’s laboratory set out to answer the questions "Why?" and "How?" By studying the effects of rotenone on rat neurons, they discovered that one of the targets of the pesticide was microtubules – intracellular highways for transporting various chemicals such as dopamine to the brain area that controls body movement. Normally the enzyme parkin would protect the neuron from rotenone’s assault on microtubules, Feng said.

"When microtubules are broken down by rotenone, the disassociated protein building blocks, called tubulin, are left behind," he said. "These tubulins are probably misfolded proteins. Left unattended, they could interfere with the normal assembly of microtubules. Based on our previous work that parkin marks this ’old’ tubulin for rapid degradation, we theorize that parkin may thus prevent this interference."

Mutated parkin loses this protective ability, however, allowing rotenone to do its damage unchecked. Feng and colleagues showed that rotenone damages the microtubules, which prevents dopamine from reaching the brain’s movement center, causing a back-up in the dopamine transport system. Meanwhile, the backed-up dopamine accumulates in the neuron’s cytoplasm and breaks down, causing a release of toxic free radicals, which destroy the neuron.

Additional researchers on the study were Yong Ren, Ph.D., Wenhua Liu, Ph.D. and Houbo Jiang, Ph.D., postdoctoral associates in the UB Department of Physiology and Biophysics.

The study was funded by a grant from the National Institute of Health.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Lois Bakjer | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht The cytoskeleton of neurons has been found to be involved in Alzheimer's disease
18.01.2019 | University of the Basque Country

nachricht Bioinspired nanoscale drug delivery method developed by WSU, PNNL researchers
10.01.2019 | Washington State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>