Canadian researchers to develop ’smart drug’ to repair psychiatric disorders

“Smart” drugs capable of targeting specific brain cells to control psychiatric disorders such as autism and schizophrenia may be ready for early clinical trials within three years, with the launch of a $1.5 million project to take place at the Brain Research Centre (BRC), a partnership of the University of British Columbia and Vancouver Coastal Health Research Institute (VCHRI).


The new drugs would be the first significant change in decades to medications used to treat psychiatric disorders, says neuroscientist and team leader Yu Tian Wang, a UBC professor of Medicine and BRC member.

“We’re designing a whole new generation of medications that will work only on brain cells in areas that need to be repaired,” says Wang. “This new type of drug will correct abnormal brain functions in a targeted way, so patients don’t experience the side effects found in existing medications that affect the whole brain.”

One of only three investigations funded in NeuroScience Canada’s new Brain Repair Program, the project brings together five researchers from across Canada, including three investigators from the BRC at UBC Hospital.

Healthy brain functioning relies on a balance between the chemical messengers that stimulate brain cell activity (excitatory neurotransmitters) and those that diminish activity (inhibitory neurotransmitters.)

When balance is disrupted, the flow of information among brain cells in certain areas becomes confused. The result is impairments in perception, thought and behaviour seen in patients with brain disorders ranging from autism to major psychoses including schizophrenia and depression.

Using sophisticated equipment to view, study and manipulate brain messaging at the cellular level, the team will test their design of a type of drug that can fine-tune communication between brain cells and bring excitatory and inhibitory activity into a healthy balance.

Existing anti-psychotic drugs adjust communication on cell surfaces throughout the brain. Balance is restored in affected areas, however, the drugs may cause imbalance in normal, unaffected areas, leading to negative side effects. Side effects can range from sluggishness, insomnia and anxiety to severe psychoses, and limit prolonged use of these medications.

The new generation of “smart” drugs will target only the cells where communication balance is impaired, leaving healthy areas of the brain unaffected.

Wang estimates the new type of drug could be available to patients within five to 10 years.

Brain and nervous system disorders affect one in five Canadians and are among the leading causes of death in this country and are the leading cause of disability. Health Canada has estimated the economic burden of these disorders at $22.7 billion and costs are expected to rise significantly as the population ages.

Other team members are: (in alphabetical order) Assistant Prof. Alaa El-Husseini, UBC Dept. of Psychiatry and BRC; Associate Prof. Stephen Ferguson, University of Western Ontario; Assistant Prof. Ridha Joober, McGill University; Professor Anthony Phillips, UBC Dept. of Psychiatry and BRC.

Media Contact

Hilary Thomson EurekAlert!

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors