Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the battle of Waterloo could help doctors fight death from multiple organ failure

23.11.2004


Waterloo’s battlefield is reigniting the debate about whether modern medicine is always good for you, according to University College London (UCL) scientists who are launching a study of why some critically ill patients recover and others die from multiple organ failure - the number one killer of patients in intensive care.

Speaking today at a public lecture held in London, Professor Mervyn Singer from UCL’s Institute of Intensive Care Medicine said the impressive survival statistics of injured soldiers at the battles of Waterloo and Trafalgar serve as a reminder of how we underestimate the human body’s ability to heal itself under the most extreme conditions. Of the 52 privates in the 13th Light Dragoons wounded by sabre, gunfire and cannon injuries at Waterloo, only two subsequently died.

Prof Singer says: “Despite the non-existence of antibiotics, blood transfusions, life-support machines and other paraphernalia of modern intensive care, most of these soldiers recovered, often from life-threatening injuries. Yet with all our technical advances in medicine, mortality rates from conditions such as sepsis (bacterial infection of the bloodstream) haven’t improved dramatically over the past century. “The question we need to ask ourselves is whether our present understanding of underlying pathology in medicine is leading us down the wrong path, and whether our current interventions may even be injurious to the healing process.



“Modern treatments trigger changes in the patient’s inflammatory and immune responses or influence circulatory, hormonal, bioenergetic and metabolic systems in ways we don’t appreciate. Even lowering the temperature of a feverish patient may be counter-productive. We may need to be more strategic in our treatments and therapies, tailoring them to how the body responds naturally to sepsis and other critical illnesses.”

Survival statistics from the battle of Waterloo throw up an even more radical theory – could it be that multiple organ failure, triggered by severe trauma or subsequent infection, actually represents the body’s last-ditch attempt to survive in the face of a critical illness? By switching itself off and becoming dormant, as with hibernating animals during extreme cold, the body may thus be able to tide itself through the critical period. Support for this theory comes from the fact that the organs invariably recover, to the point of appearing remarkably normal, within days to weeks when the patient survives.

Professor Singer and colleague Dr Paul Glynne from UCL’s Institute of Hepatology are about to embark on a large study of multiple organ failure induced by sepsis, which kills around a third of patients in intensive care. Ultimately, they hope that by understanding why people either survive or die from this condition, new therapies can be developed to reduce the period of illness and mortality rate.

Preliminary work suggests that the body’s ability to store and use energy efficiently may play a part in determining whether a patient will recover. A recent study by Dr Glynne and Prof Singer has linked leptin, the protein hormone regulating hunger, body weight and metabolism, to sepsis-induced organ failure and recovery.

Dr Glynne says: “The body’s inability to regulate energy expenditure seems to play a key role in the development of sepsis-induced multiple organ failure. We think that some septic patients become deficient in leptin and this leads to energy failure and subsequent organ dysfunction. Exploring the relationship between leptin, body energy regulation and the severity of critical illness will reveal whether leptin, or one of its downstream targets, could potentially be developed as a new therapy for septic patients with organ failure."
Professor Mervyn Singer’s lecture, “Are we Ignoring the Lessons of Waterloo at our (Patients’) Peril?” held today at 1pm at UCL, is part of a series of lunchtime lectures which are open to the general public.

For more information about UCL’s Lunch Hour Lectures, please visit http://www.ucl.ac.uk/registry/events/lhl/

Jenny Gimpel | alfa
Further information:
http://ww.ucl.ac.uk

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>