Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study may lead to new means of increasing effectiveness of existing cancer treatments

23.11.2004


Mount Sinai researchers identify a new mechanism that contributes to the development of some breast and ovarian cancers



Researchers at Mount Sinai School of Medicine have discovered a new mechanism of activation of a pathway known to be implicated in many cancers. Additionally, the researchers found that when this mechanism is blocked cells may become more sensitive to radiation and chemotherapeutic agents, thus making them easier to destroy. The research was published in the November issue of Cancer Cell.

The researchers investigated the Wnt pathway, which is known to be integral to regulation of cell differentiation – the process by which a stem cell develops into a specific type of cell. Once differentiated, cell proliferation is limited. When activated the Wnt pathway tells cells not to differentiate allowing them to grow unchecked, which can lead to development of a cancer.


Drs. Anna Bafico, Stuart Aaronson and colleagues at Mount Sinai School of Medicine discovered that in some breast, ovarian and colon cancer cells this pathway becomes active through triggering of a receptor on the surface of the cell. So, the cell can stimulate itself, remain in an undifferentiated state and continue to proliferate. Furthermore, they discovered that the pathway can be shut off at the cell surface by compounds that block the receptor. Once turned off, such cancer cells become more sensitive to agents that induce cell death.

While it was previously known that the Wnt pathway is involved in almost all cases of colon cancer and in some ovarian, and skin cancers, this study was the first to implicate this pathway in breast cancer and to identify this mechanism in human tumor cells. "An increasing number of cancer therapeutic agents are being developed to block pathways activated by interactions at the cell surface," said Dr. Aaronson, Professor and Chairman of Oncological Sciences at Mount Sinai School of Medicine. "This research provides a novel target to interfere with a pathway that is implicated in many cancer types."

"Selectively interfering in this pathway in cancer cells with this mechanism may make them more sensitive to existing treatments," said Dr. Bafico, Assistant Professor of Oncological Sciences at Mount Sinai School of Medicine.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Health and Medicine:

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

nachricht Breakthrough in understanding how deadly pneumococcus avoids immune defenses
13.11.2018 | University of Liverpool

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>