Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antipsychotic drugs stop fatal viral infection in brain cells

19.11.2004


Generic antipsychotic drugs can protect brain cells from a virus that causes a fatal nervous system disorder, according to research conducted at Brown University and Case Western Reserve University.



The disorder, called progressive multifocal leukoencephalopathy or PML, affects hundreds of Americans with suppressed immune systems, including kidney transplant recipients, cancer patients undergoing chemotherapy and an estimated 4 percent of people with AIDS.

PML is caused by the JC virus, which destroys the cells that produce the fatty sheath that covers nerve cells. This causes dementia, vision loss, movement and speech impairment, paralysis and coma. The disorder is fast moving and fatal; Many patients die within four months after onset. PML is also on the rise. Due to the AIDS pandemic, incidence of the disorder rose 20-fold in the United States between 1979 and 1994, according to a study conducted by federal researchers.


But a team of scientists, led by Brown virologist Walter Atwood, has found that a handful of antipsychotic drugs can prevent brain cells from becoming infected by the JC virus. The drugs may prove to be an effective, ready-made therapy for PML prevention or treatment. Their results are published in the current issue of Science. "This is very promising," Atwood said. "These are generic drugs we can take off the shelf that may help a lot of people." "It is likely that there are many other drugs with none of the potential side effects of antipsychotic drugs that will also block infection," said co-author Bryan Roth, professor of biochemistry at the Case School of Medicine and director of the National Institute of Mental Health’s Psychoactive Drug Screening Program.

Atwood, an associate professor of medical science in the Department of Molecular Microbiology and Immunology at Brown, has studied the JC virus for more than a decade. The virus is common – anywhere from 70 to 80 percent of adults carry it in a latent form – and it infects certain types of glial cells, which support and protect neurons. It travels to the brain in people with severely weakened immune systems. But scientists didn’t know precisely how it infects those cells. Atwood knew that cellular entry depended on a particular protein, called clathrin, and began to test compounds that would block it.

Atwood tried chlorprozamine, a drug used to control psychotic symptoms such as hallucinations and delusions, and found that it worked. But chlorprozamine can cause serious side effects, such as lowered blood pressure, stiffness and tremors, so Atwood and his team tested seven similar drugs. They found that three others, most notably the antipsychotic clozapine, also prevented infection in human glial cells without troubling side effects.

By pinpointing drugs that block the JC virus, researchers uncovered how the virus operates in the body. The JC virus attaches itself to a receptor on the surface of glial cells, called 5HT2AR, which normally binds with serotonin, a compound that plays an important role in depression and anxiety. That receptor, or cellular "gate," opens and allows the virus to get inside cells.

To be sure that 5HT2AR was the cellular receptor for the virus, Atwood’s team conducted a novel experiment. They took a line of cancer cells that lack 5HT2AR and inserted the receptor gene. They found that these re-engineered cells were now susceptible to infection from the JC virus. Then researchers used the antipsychotic drugs to see if they blocked the virus. They did.

By understanding that the JC virus can be stopped with clozapine and comparable serotonin receptor blocking drugs, Atwood and Roth said new avenues for PML therapy are now open. The antihistamine cyproheptadine, for example, could have the same effect on the virus. "Cyproheptadine has very high affinity for 5-HT2A receptors and is not likely to have many of the side effects associated with drugs like clozapine and chlorpromazine," Roth said.

Atwood is establishing collaborations with several clinical neurology centers to determine whether compounds such as cyproheptadine will, in fact, help prevent or treat PML. Atwood’s team at Brown included Gwendolyn Elphick, a research associate in the Department of Molecular Microbiology and Immunology; William Querbes, Joslynn Jordan, Sylvia Eash and Aisling Dugan, students in the graduate program in pathobiology; and Gretchen Gee, Kate Manley and Megan Stanifer, students in the graduate program in molecular biology, cell biology and biochemistry. Bryan Roth, Anushree Bhatnagar, and Wesley Kroeze from Case Western Reserve University Medical School collaborated with Atwood on the project.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>