Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research with red tide toxin yields potential therapies for cystic fibrosis

15.11.2004


Researchers working with Florida red tide discovered two new compounds that may treat mucus build-up associated with cystic fibrosis and similar lung diseases. Preliminary studies show these compounds improve the flow of mucus through the respiratory tract, allowing airways to clear more quickly and efficiently.



"These compounds are excellent candidates for the development of an entirely new class of drugs targeted for the treatment of mucociliary disease," said Kenneth Olden, Ph.D., director of the National Institute of Environmental Health Sciences.

The NIEHS, one of the National Institutes of Health, provided $6.6 million to scientists at the University of North Carolina at Wilmington and Mount Sinai Medical Center in Miami Beach for the study. The findings are published in the January issue of the American Journal of Respiratory and Critical Care Medicine. Florida red tide consists of microscopic plant-like cells that produce a potent chemical toxin that causes fish kills, contaminates shellfish, and creates severe respiratory irritation in people. As the concentration of red tide increases, waves and wind disperse toxin particles into the air, causing irritation of the eyes, nose, throat, lips and tongue.


After identifying the most potent of the red tide toxins, researchers asked a second question: Can the respiratory problems caused by the toxin be prevented? Their research led to the discovery of two "anti-toxins" - a man-made compound known as ƒÒ-Naphthoyl-brevetoxin, and brevenal, a natural compound produced by the organism itself. Experiments conducted in sheep revealed that both compounds were able to block the effects of the red tide toxin on the respiratory system.

While conducting experiments on the red tide anti-toxins, researchers made an even more important discovery - the anti-toxins behaved much like drugs used to treat cystic fibrosis. "We found these compounds are able to speed up the clearance of mucus from the lungs," said Daniel Baden, Ph.D., director of University of North Carolina at Wilmington¡¦s Center for Marine Science and director of the project.

According to Baden, mucociliary clearance is one of the most important defense systems in the lungs, protecting the airways from bacteria and pollutants. "We think the ability of these anti-toxins to improve the clearance of mucus may be due to a combination of increased movement of the cilia, the tiny hair-like structures that line the airways, and a thinning of mucus," he said.

Tests conducted in experimental animals showed these compounds to be effective at doses 1 million times lower than the current medications used in the treatment of cystic fibrosis. "These agents can improve the clearance of mucus, and they may also work at concentrations that have no side effects," said William Abraham, Ph.D., a pulmonary pharmacologist at Mount Sinai Medical Center and author of the study. "These compounds will serve as experimental models in the development of drug therapies for those who suffer from cystic fibrosis and other lung disorders characterized by excessive mucus secretion," said Baden.

Cystic fibrosis is the most common fatal genetic disease among Caucasians. Approximately 30,000 Americans have cystic fibrosis, and 12 million people carry the defective gene but are not affected by it. A person with cystic fibrosis produces thick, sticky mucus that provides a perfect breeding ground for bacterial growth. Cystic fibrosis patients are susceptible to more strains of bacteria than others, and have a much harder time fighting these infections. Symptoms of cystic fibrosis include frequent wheezing, chronic cough, and pneumonia. While chest thumping is used to clear thick mucus from the lungs, medications can be given to thin the mucous and help breathing.

John Peterson | EurekAlert!
Further information:
http://www.niehs.nih.gov

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>