Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Understanding Of Role Of Breast Cancer Gene In Normal Function And Disease

29.10.2004


Researchers at the Medical Research Council (MRC) Cancer Cell Unit, Cambridge have gained an important new insight into the role of the breast cancer gene known as BRCA2. It appears to have a key function in cell division which needs to happen accurately for normal cell reproduction and repair, otherwise disease occurs. The findings are published today (29 Friday October 2004) in the journal Science.



Around 30 to 50 per cent of breast cancers that run in families are thought to occur because the BRCA2 gene is not working. People who inherit defective BRCA2 are not only more susceptible to breast cancer, but also have a higher risk of developing cancers of the ovary, pancreas and prostate. The researchers found that where there was a mutation in the BRCA2 gene, cells failed to divide accurately and acquired an incorrect number of chromosomes.*

The final critical step where cells divide is called cytokinesis. This is where a cell separates into two to create replicas of itself known as ‘daughter cells’. It is at this point that a full set of chromosomes is put together for each of the new cells. Any malfunction in this process can result in cells having too few or too many chromosomes or abnormalities, which have implications for disease. Since the discovery of the breast cancer susceptibility genes BRCA1 and BRCA2, researchers have sought to identify exactly why mutations in these genes lead to breast cancer. Understanding the role BRCA2 has in cell division and chromosome separation sheds light on this mechanism and what happens when it goes wrong.


The research team which includes Medical Research Council and Cancer Research UK (CR-UK) scientists was led by Professor Ashok Venkitaraman, Deputy Director of MRC Cancer Cell Unit and member of the University of Cambridge CR-UK Department of Oncology. Professor Venkitaraman said: “Our research shows that BRCA2 works to link cell division with proper chromosome separation. Cancer cells frequently gain or lose chromosomes, but how this happened was not known until now. “We already know that cancer cells with highly abnormal numbers of chromosomes often respond poorly to therapy so it is important to understand how this comes about. In future it may be possible to use the results of our study to come up solutions that form the basis of effective new treatments for this type of tumour.

Matthew Daniels, one of the research team added: “It is possible that similar problems occur in non-hereditary cancers. A greater understanding of these processes will help us work towards prevention and better management of cancers.”

The research was funded by the MRC, CR-UK and an AstraZeneca studentship to Cambridge University Clinical School.

*Chromosomes are the structures in the cell which carry our genes.

| alfa
Further information:
http://www.mrc.ac.uk
http://www.cam.ac.uk

More articles from Health and Medicine:

nachricht New flexible, transparent, wearable biopatch, improves cellular observation, drug delivery
12.11.2018 | Purdue University

nachricht Exosomes 'swarm' to protect against bacteria inhaled through the nose
12.11.2018 | Massachusetts Eye and Ear Infirmary

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>