Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The long road to a promising malaria vaccine started at NYU School of Medicine

18.10.2004


The malaria vaccine reported today to reduce life-threatening cases of the parasitic disease among children in Mozambique is based on the pioneering research of Drs. Ruth and Victor Nussenzweig and their colleagues at NYU School of Medicine.



Ruth Nussenzweig, Doc en Med, Ph.D., the C.V. Starr Professor of Medical and Molecular Parasitology, and her husband, Victor Nussenzweig, M.D., Ph.D., the Hermann M. Biggs Professor of Preventive Medicine, have devoted decades of research to preventing one of the world’s biggest killers. Malaria afflicts hundreds of millions of people, causing up to 3 million deaths every year, mostly in sub-Saharan Africa. Many of its victims are young children.

In a study reported today of more than 2,000 children in Mozambique, the vaccine reduced life-threatening attacks of malaria by 58 percent, and reduced milder forms of the disease by 30 percent. The study is published in the October 16, 2004, issue of The Lancet, a medical journal. "This is really fantastic news," says Dr. Victor Nussenzweig. "It is the first time that a vaccine has been shown to protect against severe malaria, which is a major cause of death in children in Africa. It is not yet an ideal vaccine because it is expensive, requires three doses, and it isn’t known yet how durable the vaccine’s protection will be, but it is a very big step forward."


The vaccine, designated RTS.S/AS02A, contains a large portion of a protein called circumsporozoite (CS) protein, which coats malaria parasites that invade the liver. This protein, which the Nussenzweigs first isolated from parasites in 1980, is the basis for some 15 malaria vaccines that now are in clinical trials or in pre-clinical testing. The vaccine, developed by GlaxoSmithKline in collaboration with the Walter Reed Army Institute of Research, contains a large portion of the CS protein fused with a part of another protein found on the hepatitis B virus, combined with substances that enhance the immune response.

The Nussenzweigs and their NYU colleagues were the first investigators to show that it was possible to generate an immune response against the CS protein, which occurs in all of the various species of the parasite called Plasmodium causing malaria. They found that the CS protein coats the parasite when it is in the salivary glands of the Anopheles mosquito. At that stage it is a crescent-shaped and called sporozoite, a stage in the complex life cycle of the parasite before it invades the human liver and causes devastating illness. The CS protein has been an important focus of the Nussenzweigs’ work ever since Dr. Ruth Nussenzweig first showed in 1967 that it was possible to prevent malaria infection by immunizing mice with irradiated parasites. At the time, scientists didn’t think it was possible to prevent malaria by eliciting an immune-based response.

In the early 1980s, the Nussenzweigs showed that the CS protein could generate antibodies against malaria parasites, a hallmark of an immune response. Later work--in collaboration with Elizabeth Nardin, Ph.D., and Fidel Zavala, M.D., both professors in medical and molecular parasitology at NYU--led to the development of simple immunological assays that could identify mosquitoes carrying the parasite. This marked an important advance because previously scientists could only identify infected mosquitoes under a microscope, a painstaking process, and the species of Plasmodium could not be ascertained.

In 1983 the Nussenzweigs, in collaboration with Nigel Godson, Ph.D., D.Sc., Professor of Biochemistry, and cloned the gene encoding the CS protein of a monkey malaria parasite, and later they cloned the gene for the human malarial parasite Plasmodium falciparum. Further work in the 1980s led to the discovery that antibodies against CS protein could destroy the ability of malarial sporozoites to invade the liver.

The NYU investigators later found that certain subunits of the CS protein were as effective as the whole in evoking a response. This work provided the experimental basis for clinical trials of the first semi-synthetic malaria vaccine in 1987. This vaccine was developed by the Nussenzweigs in collaboration with scientists at Hoffmann-LaRoche. It was the first vaccine to show that the CS protein could protect humans against malaria.

Pamela McDonnell | EurekAlert!
Further information:
http://www.med.nyu.edu

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>