Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using fruitflies to examine alcohol tolerance

15.10.2004


Rapid and chronic tolerance appear to operate via different neurobiological mechanisms and genes

  • Alcohol tolerance both promotes and facilitates the increasing consumption of alcohol.
  • New research uses fruitflies to examine the mechanistic and genetic underpinnings of different forms of tolerance.
  • Findings suggest that rapid and chronic tolerance are partially distinct in mechanistic terms, as well as genetically distinguishable, from one another.

"Alcohol tolerance" refers to the diminishing physiological, behavioral and subjective effects of alcohol that occur with repeated exposure to the drug. A study in the October issue of Alcoholism: Clinical & Experimental Research uses flies to define the genetic and mechanistic underpinnings of different forms of tolerance. "Tolerance is important and relevant to human drinking because its development both promotes and facilitates increasing intake of alcohol," said Karen H. Berger, senior scientist at the Ernest Gallo Clinic and Research Center. "Rapid and chronic tolerance are produced by different types of previous experience with alcohol. ’Rapid tolerance’ results from a single intoxicating dose, whereas ’chronic tolerance’ is produced by repeated or continuous exposure to alcohol over longer periods of time."

"Theories about the root causes of alcoholism often invoke the development of tolerance as an important event," added John Crabbe, director of the Portland Alcohol Center. "For example, if one must keep drinking more in order to get the same happy feeling, it is easy to see how with greater tolerance there could be a greater chance of developing into a problem drinker. Also, anyone who has developed enough of a drinking problem to earn a diagnosis of alcohol dependence or alcoholism has developed a great deal of chronic tolerance. Thus, tolerance is not only a part of the diagnostic criteria for alcohol dependence and alcoholism, but it may also be important for understanding the changes in brain mechanisms that lead some to develop problems with alcohol."


"The fruitfly Drosophila melanogaster is one of the most intensively studied organisms in biology, and has provided essential insights into developmental and cellular processes that are shared with higher animals, including humans," said Berger. "Flies have a relatively sophisticated nervous system and are capable of many well-characterized complex behaviors, including response to drugs of abuse such as alcohol, cocaine, PCP, and nicotine. The popularity of flies as a model system is in large part due to the availability of powerful genetic tools that enable the identification and analysis of genes. Additionally, flies can be grown for experiments relatively rapidly and inexpensively."

For this study, researchers exposed flies to either a single intoxicating dose of alcohol (rapid tolerance), or to a low concentration of alcohol continuously during a 48-hour period (chronic tolerance). Tolerance was measured based on increased speed of recovery from subsequent intoxication relative to alcohol-naïve controls, and also by a second assay measuring delayed onset of intoxication. "In flies, like mammals, we have found that different types of alcohol exposure can produce tolerance," said Berger. "Most strikingly, our results suggest that there are differences in the mechanisms underlying tolerance produced by different protocols of previous alcohol exposure. First, pre-treatment with a drug inhibiting protein synthesis blocked the development of chronic but not of rapid tolerance. Second, a fly mutant that lacks octopamine – a neuromodulator that serves as the fly version of norepinephrine – showed reduced rapid tolerance but unchanged chronic tolerance. In sum, two different lines of experiments provide pharmacological and genetic support for the idea that rapid and chronic tolerance may utilize at least partially distinct pathways in flies."

"The most provocative result in this study is the suggestion that rapid and chronic tolerance are mechanistically distinct," said Crabbe. "This is interesting because the rodent literature suggests that … rapid and chronic tolerance appear likely to represent early and later versions of the same set of brain adaptations to alcohol. The second finding of interest concerns mutant flies with a defective ability to produce octopamine. By testing flies with mutations for many other genes, the authors will be able to test more rigorously their suggestion that different genetic pathways underlie these two forms of tolerance."

Crabbe had specific suggestions for future research in this area. "The authors of this study distinguish between two types of alcohol tolerance, rapid and chronic," he said. "There is a third general type of tolerance which occurs during a single exposure to alcohol, acute functional tolerance, which was not studied here." All three types have been demonstrated in humans, he added. "If researchers could develop an assay for acute functional tolerance in flies, they would then have a complete set of behavioral assays in parallel to those who work with rodents," said Crabbe. "Then, given the spectacular power of fly genetics, they could analyze the genetic contributions to these three types of tolerance with a thoroughness and speed that greatly outstrips the abilities of those scientists using rodents. By identifying specific genes and pathways, they could settle for once and for all whether these are simply way stations on a single continuum of neural adaptation, or three different sets of brain adaptations of alcohol. In the end, the goal is to move beyond our current understanding, that is, that some humans possess a genetically influenced tendency to develop alcoholism and others do not. The great similarity among the genomes of flies, mice and humans may very well help us to do so."

Karen H. Berger, Ph.D. | EurekAlert!
Further information:
http://www.egcrc.org
http://www.ohsu.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>