Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worldwide clinical trials for new technique for early detection of eye disease

12.10.2004


A unique new non-invasive technique for high resolution optical imaging of the eye is receiving global acclaim. The technique, pioneered by the University of Kent, is funded by the Toronto-based company, Ophthalmic Technology Inc (OTI). The University’s Applied Optics Group is currently working with university hospitals in New York (USA), Osaka (Japan), Asahikawa (Japan), Amsterdam (Netherlands) and Milan (Italy) to carry out preliminary clinical trials. By combining two high-resolution imaging technologies, the new technique provides doctors with 3-D images of the retina, macula and the optic nerve. Such high resolution images provide clinicians with capabilities for early diagnosis and treatment of common ocular diseases such as glaucoma, diabetes and age-related macula degeneration. OTI is planning in the near future to extend the clinical research to other leading university medical centres in Japan, USA and Europe.



The Kent team, based in the School of Physical Sciences, is the only research group in the world carrying out this type of work. Co-ordinated by Professor Adrian Podoleanu, it operates out of two laboratories. One is in the UK at the University’s Canterbury campus and the other is in the United States at the New York Medical College, where Adrian Podoleanu is a Visiting Professor. Other members of the team include Professor David Jackson, Dr John Rogers, a former Kent PhD student now the director of OCT Research at OTI and lecturer George Dobre.

Adrian Podoleanu explained: ‘At Kent we created a very cost effective imaging system which simultaneously produces optical coherence tomography (OCT) and scanning laser ophthalmoscope (SLO) images. Its early potential was immediately realised by OTI, who commissioned the assembly of several prototypes to be tested in different clinics worldwide before embarking on commercial exploitation of the invention’.


The first clinic to test the new instrument was at the New York Eye and Ear Infirmary. Since the first installation, OTI, The Applied Optics group in Kent and the Retina Research Lab in New York work together to further improve and enhance the performance of the technology.

Dr Richard Rosen, Director of the Retinal Imaging Laboratory, was so impressed by the results that he and his researchers have been working closely with the team ever since and are currently involved with the clinical trials.

He said: ‘The simultaneous presentation of images drawn from two technologies, developed by the Kent group has opened several exciting avenues in imaging the eye, giving us access to a world of minute details not possible to be visualised by the more conventional imaging technologies’.

The clinical investigators together with the Kent team have jointly published in international medical publications and presented at clinical and scientific conferences over 50 publications and presentations related to this research.

Posie Bogan | alfa
Further information:
http://www.kent.ac.uk

More articles from Health and Medicine:

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>