Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New risks for bladder cancer identified by MIT team

08.10.2004


MIT researchers and colleagues have identified three new chemical risk factors for bladder cancer in a study involving some 600 people in the Los Angeles area. The work was reported in the Oct. 6 issue of the Journal of the National Cancer Institute.



The newly discovered carcinogens are found in cigarette smoke, which is already known to be a major cause of bladder cancer, contributing to at least 50 percent of the approximately 60,000 cases in the United States every year.

All three of the new carcinogens, however, were also found to be risk factors for bladder cancer in nonsmokers. Although second-hand smoke is one source of exposure for non-smokers, the researchers say that it is very important to identify the other sources of exposure for nonsmokers. "Identifying the non-smoking related sources of these [carcinogens] should become a high scientific priority," write the authors, who are led by Professor Steven R. Tannenbaum, the Underwood-Prescott Professor of Toxicology at MIT. "This is very important from a public health point of view," said Tannenbaum, who holds appointments in the Biological Engineering (BE) Division and the Department of Chemistry. "It’s much more effective to prevent cancer rather than treat it."


The team also identified six chemicals in the same chemical family that do not appear to be human carcinogens. Because they are chemically similar to their three noxious cousins, they could potentially lead to safer alternatives for the latter.

Authors of the paper from MIT are Tannenbaum, Paul L. Skipper, a BE principal research scientist, and Jinping Gan, a former graduate student. Their colleagues Manuela Gago-Dominguez, Kazuko Arakawa, Ronald K. Ross, and Mimi C. Yu are at the University of Southern California, Los Angeles.

In 1993 Tannenbaum and Skipper teamed up with Yu on the ongoing Los Angeles Bladder Cancer Study. Among other conclusions, that study has since identified a compound in the arylamine family that is a risk factor for bladder cancer in nonsmokers. In the current work, the researchers extended the Los Angeles study to examine "the possible relationship between bladder cancer S and nine other commonly occurring and structurally related arylamines," according to their paper.

Specifically, they analyzed blood samples from some 600 of the people involved in the study. Half had bladder cancer; the others did not but were matched against their counterparts for such things as age, sex and neighborhood. The team then measured exposure to the arylamines via a technique developed by Tannenbaum’s team more than 25 years ago. Arylamines to which a person is exposed react with a protein in the blood, resulting in specific products that can be detected and measured via mass spectrometry.

"So what popped out of this was actually pretty startling," Tannenbaum said. "Three of the nine compounds were indeed found to be significant risk factors for bladder cancer in nonsmokers. And except for one, none of those nine had ever been investigated before" for their potential carcinogenic activity, Tannenbaum said.

This work was sponsored by the National Institutes of Health through the National Cancer Institute and the National Institute of Environmental Health Sciences.

Elizabeth Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>