Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trial shows which brain cancer patients benefit from temozolomide

29.09.2004


Genetic predictive test clears way for targeted drug treatment

An international team of scientists and cancer specialists has identified which patients with the deadly form of brain tumours called glioblastomas are likely to live longer if they are treated with temozolomide, and which patients are likely to get only marginal, if any, benefit. The genetic predictive test on tumour biopsies to identify who will benefit from the drug could be carried out fairly easily in any genetics laboratory and takes only two to three days, although the availability and quality of the tissue is an important issue. If implemented widely it would mean that temozolomide would become a targeted treatment.

Dr. Monika Hegi told the EORTC-NCI-AACR[1] Symposium on Molecular Targets and Cancer Therapeutics in Geneva today (Wednesday 29 September) that the key to predicting which patients will gain from temozolomide was a gene called O-6-methylguanine-DNA methyltransferase (MGMT) – which is involved in DNA repair – and its respective methylation status in the patient’s tumour. Methylation is one of the ways that cells control which genetic information they will use. If the MGMT promoter is methylated, the MGMT gene is silenced and this means that no MGMT repair enzyme will be produced, thus preventing correction of faults in the DNA.



Dr. Hegi, head of the laboratory of tumour biology and genetics at the Department of Neurosurgery, University Hospital of Lausanne, Switzerland, said that of a total of 573 patients, biopsies from 206 glioblastoma patients had been tested successfully so far in a seven-country trial organised by the EORTC and National Cancer Institute of Canada Clinical Trials Group (NCIC). 45% had a methylated MGMT promoter, meaning that the MGMT gene was silent and their DNA repair system was impaired.

In this tested group 106 of the patients have been treated with radiotherapy and temozolomide. There was a 46% survival rate at two years for the 46 patients in the group who had a methylated MGMT promoter (silent MGMT gene) but for the 60 patients with non-methylated promoter (active MGMT gene) status the two-year survival rate was only 13.8%, a statistically highly significant difference. "These results are important because temozolomide is a drug that acts directly against DNA to slow down the replication of cancer cells. So, it is bad news if the patient has non-methylated status because the DNA in these rogue cancer cells is being repaired as fast as the drug causes damage. This means the cancer cells are able to survive the drug’s onslaught," said Dr. Hegi, who is also project leader at the national Centre of Competence in Research Molecular Oncology at ISREC in Epalinges, Switzerland. She said that the study was the first randomised trial to test MGMT methylation status in a large patient population. "The test will provide the opportunity to select patients that might profit from temozolomide. In other words, temozolomide can become a targeted treatment. It is a first step towards molecular diagnostics. In the future, biopsy material optimally conserved for molecular testing should be collected for all patients as a routine diagnostic procedure." It also meant, she added, that for patients without methylation, future clinical trials could be designed evaluating new treatments rather than treatments with temozolomide. Temozolomide would now certainly become the standard treatment for those patients whose tests predict that they would benefit from the drug.

Dr. Hegi said these results were important not only for patients who were likely to benefit, but also for those that were not. Even though the drug was well tolerated it still had inherent toxicity. Patients who were unlikely to respond could be spared side effects and possibly benefit from other treatments that would be more effective for them. Another drug called 06-Benzyl-guanine – a substrate for the MGMT enzyme – was currently being tested to see if it would deplete the activity of MGMT. Combined with this drug it was possible that temozolomide might also then become effective in patients with an unmethylated MGMT promoter, although it would be likely to increase toxicity to other organs as MGMT protected against DNA mutations. The research team is also analysing the trial biopsies for molecular patterns that might indicate possible new drug targets.

Temozolomide is the first chemotherapy for 30 years to have been proven effective for glioblastomas, which make up around 12 to 15% of all brain cancers with 2-3 new cases diagnosed per 100,000 population annually in Europe and North America[2]. The drug was approved in 1999 for use in patients who have relapsed after initial treatment. "Our results should encourage and fuel further multidisciplinary research, bridging the gap between basic research and clinical practice," said Dr. Hegi. "Whether temozolomide will cure some patients remains to be demonstrated. Glioblastoma remains a dreadful disease without a cure, and there is still a long way to go."

Margaret Willson | EurekAlert!
Further information:
http://www.eortc.be

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>