Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wisconsin scientists develop quick botox test

28.09.2004


Scientists from the University of Wisconsin-Madison have developed a pair of rapid-fire tests for botulinum toxin, a feat that could underpin new technologies to thwart bioterrorism and spur the development of agents to blunt the toxic action of the world’s most poisonous substance.



Writing this week in the Proceedings of the National Academy of Sciences (PNAS), the Wisconsin group, led by UW-Madison physiologist Edwin R. Chapman, describes the development of two assays for botulinum toxin - one a real-time test - that vastly improve on current technologies to detect the deadly poison. "We needed a real-time assay," says Chapman, suggesting the technology could potentially be deployed to protect the food supply, soldiers on the battlefield, or used by emergency responders dealing with an unknown agent. "The old test takes days."

In addition to the real-time assay, which could be deployed in a kit and used in the field, the Wisconsin team also developed a cell-based assay that helps provide a glimpse of the toxin doing its dirty work in living cells. This technology promises a rapid screen for millions of chemicals to see which might inhibit the paralyzing effects of the toxin, according to Min Dong, a UW-Madison post-doctoral fellow and the lead author of the PNAS report. "The primary application is to conduct cell-based, large-scale screening for toxin inhibitors," Dong says. "A cell-based assay has the potential to reveal molecules that may inhibit various toxin action pathways."


Botulinum toxin is made by a bacterium that causes food poisoning. The poison is the most toxic substance known, six million times more potent than rattlesnake venom. It works by binding to nerve endings. The toxin is taken up by the nerves where it blocks chemical signals from reaching muscles. With enough blocked nerve endings, the toxin can cause paralysis and death.

In recent years, the nerve toxin has been used therapeutically to treat nerve disorders and help calm the muscles of cerebral palsy and stroke patients. It is best known to the public by the trade name Botox, which, in minute doses, is widely used in cosmetic procedures to smooth frown lines and wrinkles.

Last year, Chapman’s group identified the mechanism by which the toxin enters cells. Inside the cell, the toxin targets three key proteins, which are essential for mediating the release of chemical signals from neurons and that governs how messages are sent from brain to muscles. "The toxins are smart," Chapman notes. "They know where to go" inside cells to do the most damage.

The newest work, says Chapman, helps give scientists an inside-the-cell view of the toxin at work. The toxin employs a four-step process - from cell entry to blocking the release of chemical messengers from nerve endings - and interfering with any of the steps in the process can inhibit the poison’s toxic action. "We can screen for (agents) to block any one of those steps," explains Chapman. "We could screen one million drugs at a time, and you can do all the screening using live cells."

The potential upshot of such a screening technology could be the development of drugs that act like a prophylactic to confer protection from botulinum poisoning. The new tests, according to Chapman, can be conducted with ordinary lab equipment. It works by introducing into cells bioluminescent proteins whose glow is extinguished in the presence of the toxin. The tests are capable of detecting all seven variants of the poison. Currently, the most sensitive and common test for toxin activity is exposing mice to an agent. The process takes time and many animals are used and die in the process.

The Wisconsin Alumni Research Foundation has patented the new botulinum toxin technology. In addition to Chapman and Dong, co-authors of the new PNAS paper include William H. Tepp and Eric A. Johnson, both of the UW-Madison department of food microbiology and toxicology.

Edwin Chapman | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>