Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Consortium identifies novel potential therapeutic targets for spinal cord repair

17.09.2004


Research funded by the Christopher Reeve Paralysis Foundation focuses on 108 genes



The study, involving the seven Consortium laboratories, characterized the changes in gene expression at the site of, as well as above and below, a moderate contusion injury in rats. The project involved 108 GeneChips and looked at four time points, spanning from three hours after injury to a more "chronic" state 35 days later. The data analysis produced a spatial and temporal profile of spinal cord injury and also identified several promising avenues for new clinical treatments. The study, the largest of its kind published to-date in the spinal cord field, is now available in the October issue of Experimental Neurology at http://dx.doi.org/10.1016/j.expneurol.2004.05.042.

The CRPF Research Consortium on Spinal Cord Injury is an international network of neuroscientists focused on repair and recovery of function in the chronically injured spinal cord. Through collaborative research, Consortium investigators are studying how to optimize the intrinsic capacity of the adult nervous system to repair and remodel itself as well as how to elicit robust regenerative responses after injury.


The Consortium is working with TopCoder (http://www.topcoder.com), a Glastonbury, CT company that organizes and hosts online and onsite programming competitions for a global community of members, to create a high-quality, web-based application to disseminate the microarray data from this study to the scientific community. This interactive platform, which will allow users to see how thousands of genes behave after injury, will be available at http://genechip.salk.edu/ shortly and will make data easily accessible to all scientists including those unfamiliar with GeneChip technology. CRPF believes that the database information will be highly relevant to researchers investigating many different aspects of spinal cord injury. Since the web application is still under development, temporary access to the study’s raw data and analyzed files is available now at http://genechip.salk.edu/.

"This is groundbreaking research," said Kathy Lewis, President and CEO of CRPF. "Consortium scientists are already moving forward to explore the therapeutic possibilities identified by the study."

Microarray technology has emerged as an exciting and aggressive tool that enables researchers to screen thousands of genes simultaneously to see which ones are active, or expressed, and which ones are silent. Genes are arrayed on a microchip the size of a fingernail, and experiments that once took years to complete can now be done in a relatively short time. The technology eliminates a lot of the guesswork that had been involved in gene profiling. Scientists believe that by observing the patterns of gene expression to see how they change after a spinal cord injury, they might identify therapeutic targets.

"Microarray technology gives us an unbiased ’snapshot’ of gene expression in many animals, including the mouse and rat, and humans. The approach enables biologists not only to explore gene changes after injury but also to look at genes that are changed by any experimental therapy. It is a powerful research tool," said Susan P. Howley, CRPF Executive Vice President and Director of Research.

The Christopher Reeve Paralysis Foundation (CRPF) is committed to funding research that develops treatments and cures for paralysis caused by spinal cord injury and other central nervous system disorders. The Foundation also vigorously works to improve the quality of life for people living with disabilities through its grants program, Paralysis Resource Center, and advocacy efforts. For more information on CRPF’s Research Consortium visit www.ChristopherReeve.org or contact Susan P. Howley at 800-225-0292, ext. 113.

Maggie Goldberg | EurekAlert!
Further information:
http://www.crpf.org

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>