Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team explains yin-yang of ginseng

31.08.2004


Work emphasizes need for stronger regulations of herbal drugs



In work that emphasizes the need for stronger regulations of herbal drugs, an international team of MIT scientists and colleagues has unraveled the yin and the yang of ginseng, or why the popular alternative medicine can have two entirely different, opposing effects on the body.

Conflicting scientific articles report that ginseng can both promote the growth of blood vessels (key to wound healing) and stymie that process. The latter is important because preventing the formation of blood vessels can be enlisted against cancer. Tumors are fed by blood vessels; cutting off their supply can kill them.


In the Sept. 7, 2004 issue of Circulation: the Journal of the American Heart Association, the researchers from the United States, England, the Netherlands and Hong Kong explain these dual effects for the first time.

Chemical fingerprints of four different varieties of ginseng--American, Chinese, Korean and Sanqi--show that each has different proportions of two key ingredients. Additional studies showed that a preponderance of one ingredient has positive effects on the growth of blood vessels; more of the other component tips the scale the other way. "We found that this composition really matters for the ultimate outcome," said Shiladitya Sengupta, a postdoctoral associate in MIT’s Biological Engineering Division.

Further, the team found that the way ginseng extracts are processed can also alter the compositional ratio. "This is a very clear-cut example of why we need regulations standardizing herbal therapies through compositional analysis," said Professor Ram Sasisekharan of MIT’s Biological Engineering Division. With the new results, "we can now rationally isolate the components to focus on a specific effect, such as promoting blood-vessel formation."

In the United States, herbal medicines are currently regulated under the 1994 Dietary Supplement and Health Education Act, which does not require standardization or prior approval from the Food and Drug Administration. "You can basically crush it and sell it," Sasisekharan said.

The new results could also lead to medicines patterned after ginseng’s key components. As the researchers write in Circulation, the identification of one of these in particular "opens up the exciting possibilities of harnessing [its] chemical scaffold as a prototype for wound-healing compounds."

Sasisekharan emphasizes the importance of Sengupta’s interdisciplinary approach to the work. "He had the foresight to integrate the biology of cancer and blood-vessel formation to the pharmacological behavior of this drug and its structure."

MIT’s role in the collaboration grew from Sasisekharan’s expertise in complex sugars, which turn out to be key to ginseng’s activity. "The sites where sugars are attached and how they are attached are unique for each of the molecular constituents, the ratio of which are distinct among the different varieties of ginseng," he explained. In 1999 Sasisekharan’s lab developed a new tool for characterizing complex sugars.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>