Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team explains yin-yang of ginseng

31.08.2004


Work emphasizes need for stronger regulations of herbal drugs



In work that emphasizes the need for stronger regulations of herbal drugs, an international team of MIT scientists and colleagues has unraveled the yin and the yang of ginseng, or why the popular alternative medicine can have two entirely different, opposing effects on the body.

Conflicting scientific articles report that ginseng can both promote the growth of blood vessels (key to wound healing) and stymie that process. The latter is important because preventing the formation of blood vessels can be enlisted against cancer. Tumors are fed by blood vessels; cutting off their supply can kill them.


In the Sept. 7, 2004 issue of Circulation: the Journal of the American Heart Association, the researchers from the United States, England, the Netherlands and Hong Kong explain these dual effects for the first time.

Chemical fingerprints of four different varieties of ginseng--American, Chinese, Korean and Sanqi--show that each has different proportions of two key ingredients. Additional studies showed that a preponderance of one ingredient has positive effects on the growth of blood vessels; more of the other component tips the scale the other way. "We found that this composition really matters for the ultimate outcome," said Shiladitya Sengupta, a postdoctoral associate in MIT’s Biological Engineering Division.

Further, the team found that the way ginseng extracts are processed can also alter the compositional ratio. "This is a very clear-cut example of why we need regulations standardizing herbal therapies through compositional analysis," said Professor Ram Sasisekharan of MIT’s Biological Engineering Division. With the new results, "we can now rationally isolate the components to focus on a specific effect, such as promoting blood-vessel formation."

In the United States, herbal medicines are currently regulated under the 1994 Dietary Supplement and Health Education Act, which does not require standardization or prior approval from the Food and Drug Administration. "You can basically crush it and sell it," Sasisekharan said.

The new results could also lead to medicines patterned after ginseng’s key components. As the researchers write in Circulation, the identification of one of these in particular "opens up the exciting possibilities of harnessing [its] chemical scaffold as a prototype for wound-healing compounds."

Sasisekharan emphasizes the importance of Sengupta’s interdisciplinary approach to the work. "He had the foresight to integrate the biology of cancer and blood-vessel formation to the pharmacological behavior of this drug and its structure."

MIT’s role in the collaboration grew from Sasisekharan’s expertise in complex sugars, which turn out to be key to ginseng’s activity. "The sites where sugars are attached and how they are attached are unique for each of the molecular constituents, the ratio of which are distinct among the different varieties of ginseng," he explained. In 1999 Sasisekharan’s lab developed a new tool for characterizing complex sugars.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>