Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team explains yin-yang of ginseng

31.08.2004


Work emphasizes need for stronger regulations of herbal drugs



In work that emphasizes the need for stronger regulations of herbal drugs, an international team of MIT scientists and colleagues has unraveled the yin and the yang of ginseng, or why the popular alternative medicine can have two entirely different, opposing effects on the body.

Conflicting scientific articles report that ginseng can both promote the growth of blood vessels (key to wound healing) and stymie that process. The latter is important because preventing the formation of blood vessels can be enlisted against cancer. Tumors are fed by blood vessels; cutting off their supply can kill them.


In the Sept. 7, 2004 issue of Circulation: the Journal of the American Heart Association, the researchers from the United States, England, the Netherlands and Hong Kong explain these dual effects for the first time.

Chemical fingerprints of four different varieties of ginseng--American, Chinese, Korean and Sanqi--show that each has different proportions of two key ingredients. Additional studies showed that a preponderance of one ingredient has positive effects on the growth of blood vessels; more of the other component tips the scale the other way. "We found that this composition really matters for the ultimate outcome," said Shiladitya Sengupta, a postdoctoral associate in MIT’s Biological Engineering Division.

Further, the team found that the way ginseng extracts are processed can also alter the compositional ratio. "This is a very clear-cut example of why we need regulations standardizing herbal therapies through compositional analysis," said Professor Ram Sasisekharan of MIT’s Biological Engineering Division. With the new results, "we can now rationally isolate the components to focus on a specific effect, such as promoting blood-vessel formation."

In the United States, herbal medicines are currently regulated under the 1994 Dietary Supplement and Health Education Act, which does not require standardization or prior approval from the Food and Drug Administration. "You can basically crush it and sell it," Sasisekharan said.

The new results could also lead to medicines patterned after ginseng’s key components. As the researchers write in Circulation, the identification of one of these in particular "opens up the exciting possibilities of harnessing [its] chemical scaffold as a prototype for wound-healing compounds."

Sasisekharan emphasizes the importance of Sengupta’s interdisciplinary approach to the work. "He had the foresight to integrate the biology of cancer and blood-vessel formation to the pharmacological behavior of this drug and its structure."

MIT’s role in the collaboration grew from Sasisekharan’s expertise in complex sugars, which turn out to be key to ginseng’s activity. "The sites where sugars are attached and how they are attached are unique for each of the molecular constituents, the ratio of which are distinct among the different varieties of ginseng," he explained. In 1999 Sasisekharan’s lab developed a new tool for characterizing complex sugars.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Cancer cells make blood vessels drug resistant during chemotherapy
02.07.2020 | Hokkaido University

nachricht Novel potassium channel activator which acts as a potential anticonvulsant discovered
02.07.2020 | The Mount Sinai Hospital / Mount Sinai School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>