ESC Congress 2004: Converting cells into heart muscle

Bone marrow derived stem cells can give rise to heart muscle cells. This plasticity concept – the ability of bone marrow cell to transdifferentiate into heart muscle cell – is supported by experimental and clinical data. Another possibility is to replace the missing function by causing transdifferentiation of existing cells. Transdifferentiation means converting one sort of cell, e.g. fibroblast, into another, e.g. muscle cell. There is real hope that we may be able to control this unique phenomenon to produce many heart cells to create a new heart muscle based on cells harvested from the patient himself.

These plasticity concepts have challenged the traditional dogma of tissue specific stem cell differentiation in adults and have raised hot debate. Many scientists have suggested alternative interpretations for plasticity research findings. Furthermore, recently, the debate regarding bone marrow and other adult stem cell plasticity has moved into the political and public zone. Opponents of human embryonic stem cell research see the plasticity of adult cells as a means of avoiding the use of human blastocysts (embryos a few days old) that is required to obtain pluripotent embryonic stem cells.

Despite the plasticity controversy and our limited understanding of stem cell plasticity, we hope that if we can control this process we may be able to use adult cells to produce new heart tissue for transplant and heart repair. J Leor (TEl Hashomer, IL)

Media Contact

Camilla Dormer alfa

More Information:

http://www.escardio.org

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors