Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Your Knees And Quads Hurt More After Running Than Walking: You’re Only Human

24.08.2004


Your knees take the brunt of the increased demands on your lower body in terms of the amount of muscle mass used and joint flexion when you compare walking to running. By a lot. Why? Because you’re human.



Though humans share a lot of qualities with other mammals, we are unique in terms of posture, locomotion and gait. (In fact, we’re among the only two-legged mammals who walk and run.) For instance, horses consume about the same amount of energy to cover a mile when running or walking, while humans consume substantially more energy when they run than when they walk.

But with our unique patterns of limb kinematics, a group of scientists wanted to study exactly how that affects how we use our muscles while walking and running, and to better understand why it’s more “efficient” to walk than to run.


Harvard research finds five-fold increase in knee torque, muscle force

The researchers, most of whom at one time were graduate students of the late C. Richard Taylor at Harvard University, filmed four healthy males walking and running at six self-selected speeds. They measured vertical force on the ground and velocity as the subjects chose “slow,” “preferred” and “fast” speeds for both running and walking.

They found that with an increase of speed and gait, the maximum muscle force increased steadily at the hip, remained fairly constant at the ankle, but increased sharply at the knee when the subjects changed from a walk to a run. In most instances (except for the hip at a run), they found that limb muscles were primarily acting to generate force on the ground and the muscle’s role in overcoming inertia and gravity was minimal.

Results of the research are reported in a paper entitled “Muscle mechanical advantage of human walking and running: implications for energy cost,” which is online at the Journal of Applied Physiology, one of 14 peer-reviewed journals published by the American Physiological Society.

Lead author Andrew A. Biewener is at Department of Organismic and Evolutionary Biology at Harvard University, Boston; Claire T. Farley is at the Dept. of Integrative Physiology at the University of Colorado, Boulder; Thomas J. Roberts was at the Dept. of Zoology, Oregon State University, Corvallis; and Marco Temaner is at the Dept. of Organismal Biology & Anatomy, University of Chicago, Illinois. Since completion of the paper, Thomas Roberts has moved to Brown University.

Change in posture while running reduces mechanical advantage

Since the knees are more bent during running than during walking, the researchers found that the amount of force generated by the knee extensors (quadriceps muscles) rose almost 5-fold when walking humans broke into a run, a somewhat confusing idea for the non-expert. These high forces generated by the knee extensors cause running to be aerobically more demanding than walking. Consider this example: when a person tries to stand with their knees bent to around 90°, their quads fatigue very rapidly. In contrast, if they stand with their legs straight, they don’t notice any fatigue in their quads. This is similar to the running vs. walking differences. In running, the knee is much more bent when the foot is on the ground than in walking. For this reason, the quads generate much higher forces during running and consume much more energy.

The study identifies this single difference between walking and running as playing an important role in causing running to be less economical than walking. The researchers note that it’s not the entire reason, but it’s important.

By contrast to the knee extensors, the ankle and hip extensors don’t have a large change in posture or force generation at the gait transition, so the energy consumption by those muscle groups doesn’t increase substantially at the gait transition. Due to the contrast between the knee extensors and the other limb muscle groups, they identified the high forces generated by knee extensors as the primary reason for the high energy cost of running.

The researchers also looked at the active muscle volume needed to generate force on the ground, and here, too, the knee extensors sprung way past the hip and ankle. Whereas all three joints increased the active muscle volume as speed increased and gait changed, the knee extensors increased 4.9-fold during running (to 49% of the three extensor groups combined, vs. 23% at a walk). This compared with a 1.77-fold increase for the hip extensors (to 36% of the aggregate total while running, from 46% walking) and a 1.10-fold increase for ankle extensors (way down to 16% of the total while running from 36% at a walk).

They warn, however, that “the interacting effects of increased muscle recruitment but decreased activation duration on energy cost, when humans increase speed and change gait from a walk to a run, remains an important challenge to sort out.”

The researchers conclude that “greater energy cost during running in humans may be explained in part by the decrease in limb mechanical advantage results from the use of more flexed knee joint during running versus walking [and speculate that this] may reflect the evolution of a unique erect bipedal gait within hominids which distinguishes modern humans from avian bipeds and mammalian quadrupeds.”

Source and funding: The article, “Muscle mechanical advantage of human walking and running: implications for energy cost,” is online in the Journal of Applied Physiology, published by the American Physiological Society. A copy of the abstract is available to the public at www.the-aps.org.

This study was supported by NSF grant IBN-930763 and NIH grants AR-046499 and AR-047679.

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>