Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links nutritional supplement, creatine, to increased metabolic energy

24.08.2004


Temple University researcher seeking physiological evidence of chronic fatigue syndrome (CFS) has found a link between creatine and metabolic energy. The findings, which hold promise for future CFS treatments, were published in a recent issue of the Journal of Applied Physiology.



"We found that creatine affects mitochondria - the parts of the cells that produce energy for all biological functioning - in normal human subjects. Now that we have established this baseline evidence, we are looking at the link between creatine and energy production in CFS patients," said lead author Sinclair Smith, Sc.D., assistant professor of occupational therapy in Temple’s College of Health Professions.

Creatine, thought to build muscle and improve performance, is a popular over-the-counter supplement used by athletes. Smith and his colleagues wondered if creatine could also be used to help relieve the extreme physical and mental fatigue that strikes CFS sufferers.


"Many physicians still don’t believe that CFS exists, making it important to investigate possible physiologic differences and to determine if we can impact metabolic function in CFS patients," explained Smith.

"In addition to improving muscle metabolic function, recent studies show that creatine supplementation may improve nervous system function as well. Given that cognitive fatigue is a frequent symptom of CFS, we thought that creatine may enhance both muscle and neural metabolic status in people with CFS," said Smith.

In the study, "Use of phosphocreatine kinetics to determine the influence of creatine on muscle mitochondrial respiration: an in vivo 31P-MRS study of oral creatine ingestion," the researchers analyzed the effect of naturally produced and supplemental creatine on the rate of muscle metabolism using non-invasive magnetic resonance imaging (MRI) techniques during exercise and rest.

While previous studies have evaluated the link between creatine and mitochondria in animals and human muscle samples, Smith’s was the first lab to test in people.

Smith collaborated in this research with the U.S. Army Research Institute of Environmental Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston University and Sargent College of Health and Rehabilitation Sciences.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Health and Medicine:

nachricht New method uses just a drop of blood to monitor lung cancer treatment
19.10.2018 | Osaka University

nachricht Photoactive bacteria bait may help in fight against MRSA infections
12.10.2018 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>