Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in understanding of hereditary disease of lymphatic vessels

23.08.2004


A study from the Ludwig Institute for Cancer Research (LICR) Affiliate Center at the University of Helsinki in Finland has shed light on the development of lymphatic vasculature and valves, and may help to develop better treatments for lymphedema.


Normal lymphatic capillaries (light blue) are devoid of smooth muscle cells, whereas the collecting lymphatic vessels are surounded by a smooth muscle cell layer (orange), which pumps the lymph forward. They also contain valves that prevent the backflow of the lymph. The lymphatic capillaries in the legs of patients who have FOXC2 mutations are abnormally shaped and surrounded by smooth muscle cells. This prevents the efficient uptake and flow of the lymph. Lack of valves in the collecting lymphatics leads to lymph backflow. (Drawing by Paula Saarinen)


Normal lymphatic capillaries (green) dare devoid of smooth muscle cells (red), while the blood vessels are surroundet by a smooth muscle cell layer (A). Mutations in the FOXC2 gene lead to abnormally shaped lymphatic capillaries, which are surrounded by smooth muscle cells (B).



The disease, which results from damaged or absent lymphatic vessels, may be inherited or may be a side-effect of the surgical removal of tumors. Lymphatic vessels normally remove fluid and proteins escaping from blood capillaries into surrounding tissues, and lymphedema is characterized by the disabling swelling of legs, and sometimes arms, that results when the lymphatic vessels are unable to clear the lymph from the tissues. The current study, which was published today in Nature Medicine, has uncovered a fundamental mechanism of the formation of lymphatic vessels.

The LICR team, together with collaborators from the UK, Japan, USA and Austria, analyzed a hereditary form of lymphedema, known as Lymphedema Distichiasis (LD), which is caused by mutations in a gene called FOXC2. The team found that the lymphatic vessels of LD patients are abnormally shaped and covered with smooth muscle cells that are usually present only on blood vessels and on larger, collecting lymphatic vessels. In addition, mutations in Foxc2 led to a lack of lymphatic valves, which prevent the reflux of lymph. This is the first study that describes a gene critical for the formation of lymphatic valves, and regulation of the interaction between lymphatic endothelial cells and vascular smooth muscle cells.


According to Professor Kari Alitalo, the senior author of the study, the insights gleaned into FOXC2 function may be applicable in the development of therapies for several disorders that affect lymphatic vessel formation. “We are currently working on approaches to stimulate the proper formation of lymphatic vessels in people who suffer from lymphedema. However, FOXC2 is produced in endothelial cells of both lymphatic and venous valves, so these results may also turn out to be important for the understanding and treatment of chronic venous insufficiency, which affects 5-25 % of the adult population.”

Sarah White | alfa
Further information:
http://www.licr.org

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>