Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model can aid in understanding immune system diseases

18.08.2004


New Model Can Aid In Understanding Immune System Diseases Researchers trying to understand diseases and develop new treatments can’t always depend on existing tools or organisms to make discoveries; sometimes they first must create models of the problems they want to study.

Such is the case with Epstein-Barr, a common virus that is often harmless but likely contributes to malignancies and autoimmnune disease in people with compromised immunity. A University of Iowa team has engineered a mouse that provides new insights into the virus.

The animal model has implications for advancing treatments for patients with AIDS or an organ transplant who get a certain type of cancer, and for people with immune system diseases such as lupus, arthritis and multiple sclerosis. The study results appear in the August issue of the journal Immunity.



The advance builds on previous UI studies done in cell culture and provides researchers with a model that allows them to see biological functions related to Epstein-Barr within the context of a whole organism, said Gail Bishop, Ph.D., Distinguished Professor of Microbiology and Internal Medicine in the UI Roy J. and Lucille A. Carver College of Medicine and a research career scientist with the Department of Veterans Affairs (VA) Iowa City Health Care System.

"Mice cannot be infected with Epstein-Barr because they do not have the receptor for this virus. What we have done is express in the mouse the most important transforming protein that is involved in the virus in humans," said Bishop, who also is associate director for basic science research at the Holden Comprehensive Cancer Center at the UI.

The Epstein-Barr virus, a member of the of herpes virus family, infects most people by adulthood, then remains latent (inactivated) after an initial and usually symptomless infection. People who get the virus in their teens or early 20s may get mononucleosis. But for people with AIDS or who are on immunosuppressive drugs to prevent rejection of a donated organ, there is a risk that the activated virus will produce a viral protein called latent membrane protein 1 (LMP1), which in turn can cause B cell lymphoma, or tumors, Bishop said.

The new mouse model will help researchers study how LMP1 impacts specific organs or tissues. Previous UI studies helped show that this viral protein mimics a normal cellular process in humans. In that process, a protein called CD40 signals B cells (white blood cells) to divide and make antibodies against infection, then terminates the signal when the need for the immune response is gone. LMP1 also triggers B cell activation, but in contrast to CD40, fails to stop it at the appropriate time.

"The viral protein is an amazing mimic of the normal protein but, in a way, the viral protein does its functions too well," Bishop said. "The viral protein causes abnormal survival and activation of these B cells."

Lymph nodes all over the bodies of these mice are enlarged by excess B cells. In addition, there is increased production by the B cells of antibodies against normal cellular components. These antibodies are called auto-antibodies.

"In humans, these auto-antibodies work against components of one’s own body and are seen in other autoimmune diseases such as lupus, arthritis, diabetes and multiple sclerosis," Bishop explained.

The researchers found that mice with LMP1 made excess auto-antibodies. This means that the mice could serve as a model for understanding how to prevent this overproduction in humans, with implications for not only Epstein-Barr Virus but also autoimmune diseases.

"Epidemiological studies show a correlative link between acute Epstein-Barr virus and autoimmune diseases, particularly lupus and arthritis," Bishop said. "We’re wondering, ’Where does this link come from?’ If the viral protein causes B cells to be hyperactive, this might increase the propensity of the small number of autoreactive B cells, which we all have, to become hyperactivated."

The team also found that mice with LMP1 have certain problems with how cells are organized in the lymph nodes and spleen.

"Normally, when a person gets an infection or vaccination, they develop a memory response. As a result, you have a particular organization of cells and tissue -- called germinal centers -- in your lymph nodes, spleen and lining of the intestine. When we looked at germinal centers in the mouse, we could see this tissue organization was disrupted," Bishop said.

By studying this dysfunction in mice, the team hopes to learn why the normal cellular protein CD40, but not the viral mimic LMP1, is able to signal to organize the cells and tissues.

"There are chemical messengers that cells normally use to tell each other where and when to go, so we will use the ’mimic’ mice to see if some of these chemical messenger are altered when LMP1 is present," Bishop said.

The team has other projects planned. The mice used in the study either had only a gene that coded for the normal protein or only a gene that coded for the viral protein. The team will breed mice that have one copy of each gene. These models may reveal whether the normal protein can suppress the abnormal protein, a function which, if it exists, could be useful in the development of therapeutics.

In addition to Bishop, major collaborators on the projects included the two lead authors Laura Stunz, Ph.D., UI associate research scientist, and Lisa Busch, a UI doctoral candidate in molecular biology who has since graduated.

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>