Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough In Treatment For Kidney Dialysis Patients

13.08.2004


A ground-breaking medical approach which could substantially improve the quality of life for over a million kidney dialysis patients, and bring huge savings to health services around the globe, is one step closer to becoming a reality, thanks to NESTA (the National Endowment of Science, Technology and the Arts) – the organisation that backs UK innovation.

NESTA has invested £95,000 in a university spin-out, Veryan Medical Limited, based at London’s Imperial College, to further develop their ground-breaking approach. The company has been financed to date by NPI Ventures Limited and Imperial College Innovations.

Veryan are dedicated to developing a number of novel medical devices to address urgent, unmet medical needs in the field of vascular disease, the greatest cause of death in the modern world. Their inventions are designed to recreate the natural swirling fluid flow of the body and prevent the development of disease. The first device to be tested in clinical human trials will be the SwirlGraft™ vascular access graft.



Currently, there are over one million people requiring regular connection to a kidney dialysis machine in order to sustain their lives. A majority of these patients have a synthetic vessel, called a vascular access graft, inserted beneath the skin to facilitate regular hypodermic puncturing and to maximize blood-flow to the dialysis machine. However, these grafts typically develop a potentially lethal disease, called ‘intimal hyperplasia’, which can block the downstream junction with the natural vessel in just a few months. This results in most grafts requiring replacement within a year, and many patients require remedial surgery up to three times a year.

SwirlGraft™ has the potential to be the most effective solution to this problem. By ensuring appropriate swirling blood flow through the dialysis graft and into the downstream vein, it stands to greatly reduce the disease by eliminating the stagnant flow regions where intimal hyperplasia proliferates.

The SwirlGraft™ device has been developed by Professor Colin Caro at Imperial College, and comes on the back of research dating back to 1966. Professor Caro is considered to be a world expert on the links between the physics of blood flow and disease. Veryan Medical is headed up by Philip Birch who brings substantial expertise of building and funding early stage healthcare companies.

NESTA’s investment will be used to develop the SwirlGraft™ device from the current experimental proof of concept through to clinical proof of concept. The trials will be based in the Netherlands and will involve 25 dialysis patients fitted with SwirlGraft™ for their vascular access, monitored for a year.

Mark White, NESTA’s Invention and Innovation Director, said: “We are delighted to be investing in a product which meets an urgent need for improved clinical performance, as well as bringing huge benefits to dialysis patients from around the world.”

| alfa
Further information:
http://www.nesta.org.uk

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>