Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough In Treatment For Kidney Dialysis Patients

13.08.2004


A ground-breaking medical approach which could substantially improve the quality of life for over a million kidney dialysis patients, and bring huge savings to health services around the globe, is one step closer to becoming a reality, thanks to NESTA (the National Endowment of Science, Technology and the Arts) – the organisation that backs UK innovation.

NESTA has invested £95,000 in a university spin-out, Veryan Medical Limited, based at London’s Imperial College, to further develop their ground-breaking approach. The company has been financed to date by NPI Ventures Limited and Imperial College Innovations.

Veryan are dedicated to developing a number of novel medical devices to address urgent, unmet medical needs in the field of vascular disease, the greatest cause of death in the modern world. Their inventions are designed to recreate the natural swirling fluid flow of the body and prevent the development of disease. The first device to be tested in clinical human trials will be the SwirlGraft™ vascular access graft.



Currently, there are over one million people requiring regular connection to a kidney dialysis machine in order to sustain their lives. A majority of these patients have a synthetic vessel, called a vascular access graft, inserted beneath the skin to facilitate regular hypodermic puncturing and to maximize blood-flow to the dialysis machine. However, these grafts typically develop a potentially lethal disease, called ‘intimal hyperplasia’, which can block the downstream junction with the natural vessel in just a few months. This results in most grafts requiring replacement within a year, and many patients require remedial surgery up to three times a year.

SwirlGraft™ has the potential to be the most effective solution to this problem. By ensuring appropriate swirling blood flow through the dialysis graft and into the downstream vein, it stands to greatly reduce the disease by eliminating the stagnant flow regions where intimal hyperplasia proliferates.

The SwirlGraft™ device has been developed by Professor Colin Caro at Imperial College, and comes on the back of research dating back to 1966. Professor Caro is considered to be a world expert on the links between the physics of blood flow and disease. Veryan Medical is headed up by Philip Birch who brings substantial expertise of building and funding early stage healthcare companies.

NESTA’s investment will be used to develop the SwirlGraft™ device from the current experimental proof of concept through to clinical proof of concept. The trials will be based in the Netherlands and will involve 25 dialysis patients fitted with SwirlGraft™ for their vascular access, monitored for a year.

Mark White, NESTA’s Invention and Innovation Director, said: “We are delighted to be investing in a product which meets an urgent need for improved clinical performance, as well as bringing huge benefits to dialysis patients from around the world.”

| alfa
Further information:
http://www.nesta.org.uk

More articles from Health and Medicine:

nachricht Scientists find new approach that shows promise for treating cystic fibrosis
14.03.2019 | NIH/National Heart, Lung and Blood Institute

nachricht Lab grown ‘brains’ successfully model disease
13.03.2019 | Max-Planck-Institut für Psychiatrie

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

A peek into lymph nodes

15.03.2019 | Medical Engineering

Novel methods for analyzing neural circuits for innate behaviors in insects

15.03.2019 | Life Sciences

Converting biomass by applying mechanical force

15.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>