Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering the basics for new kind of cancer vaccine

02.08.2004


Mayo Clinic and British researchers have developed a new approach to cancer vaccines that purposely kills healthy skin cells to target the immune system against tumors. The new approach has eradicated skin cancer tumors in mice. The approach and results challenge conventional thinking on the creation of cancer vaccines. Their report on the "heat shock" vaccine therapy appears in the August issue of Nature Biotechnology, Results are promising because multiple rounds of treatment eradicated skin cancer in all the mice in the study. If this work can be extended to humans, it could have enormous benefits. Skin cancer is currently the most common form of cancer in the United States, with an estimated one million new cases diagnosed annually.


Significance of the Mayo Clinic Research

Normally, the destruction of healthy cells is undesirable. For example, in toxic conventional chemotherapies for cancer, the goal is to kill cancer cells and spare healthy cells. This new approach is significant for two reasons:

1) It turns the death of healthy cells into a therapeutic advantage by inflicting a stress known as "inflammatory cell death" on skin cells to which researchers attached a protein involved in heat shock. Researchers were able to trigger a healing immune response aimed at the skin cancer tumors. The response was so strong it eradicated the tumors.



2) Researchers avoided triggering autoimmune attacks, which are a common disabling side effect of most cancer vaccine attempts. In autoimmune attacks the body attacks and injures itself -- instead of the cancer. This new approach appears to breach a major obstacle to advancing cancer vaccine research from the laboratory into human trials.

"We’re very encouraged by these results because our main interest is in generating cancer vaccines that will stimulate the immune system to recognize tumors and eradicate them. We hope our novel approach will be a more specific, and therefore gentler therapy for patients,’’ says Mayo immunologist and lead researcher Richard Vile, Ph.D.

Background

To test the idea that killing normal cells might trigger a specific immune system response, the team chose normal skins cells called melanocytes that are involved in the highly lethal cancer malignant melanoma. The researchers created a molecular scout to home in on and kill some of the melanocytes in mice. To the molecular scout they attached an unusual protein, called heat shock protein 70, or hsp70. It normally is not present in healthy cells, but when cells die under certain conditions, they release hsp70. "It’s a danger-signal system that the body is in trouble," says Dr. Vile. "We hoped to trigger an anti-tumor response."

The unanticipated result was a two-step reaction with promising traits that may one day help skin cancer patients. In the first step, the heat shock protein recruited T cells -- the main warriors of the immune system -- that attacked melanocytes. The T cells killed all tumors in the mice.

Researchers also questioned whether a raging T-cell attack might prompt autoimmune disease. The immune system apparently anticipated that. In response to the vaccine, it sent out regulatory T cells to calm down the first group of fighting T cells.

Says Dr. Vile: "The nice twist is that originally we thought we would generate a very potent autoimmune disease before we killed the tumor. But we found just the opposite. What happens is that you get a burst of T cells that kill the melanoma, and then they are suppressed by regulatory T cells in the mouse before they cause autoimmune disease."

For humans, this is good news. "This is very hopeful because we think in the clinic there are good chances we can control anti-tumor effects before we get to the autoimmune problems," says Dr. Vile.

The Next Step

The researchers will pursue two basic paths. One will extend the current work on a heat shock vaccine to other tissue and tumor types to determine its effectiveness against breast, lung or prostate cancers. The other is to test this immunotherapy in clinical trials with humans.

Bob Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>