Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood pressure hormone may inhibit growth of lung cancer

02.08.2004


A hormone that is important in the control of blood pressure may also inhibit the growth of lung cancer cells, say scientists at Wake Forest University Baptist Medical Center, writing in the new issue of the journal Carcinogenesis.



Patricia E. Gallagher, Ph.D., and E. Ann Tallant, Ph.D., said the hormone, called angiotensin-(1-7), "may represent a novel chemotherapeutic and chemopreventive treatment for lung cancer."

Their studies found that angiotensin-(1-7) significantly slows the growth of three different types of human lung cancer cells in the laboratory. "Our experiments provide the first evidence that angiotensin-(1-7) inhibits the proliferation of human lung cancer cells," they said.


They hypothesized that the hormone serves as a natural regulator of cell growth, both by reducing the rapid proliferation of cells common in cancer and by increasing cancer cell death.

Gallagher and Tallant have been working with angiotensin-(1-7) for years as members of the Hypertension and Vascular Disease Center faculty. The director of the center, Carlos M. Ferrario, M.D., discovered angiotensin-(1-7) in 1988, and found it to be a critical element of the blood pressure control system.

Angiotensin-(1-7) relaxes (dilates) the walls of the blood vessels, causing blood pressure to be lowered while its hormonal counterpart, angiotensin II, constricts blood vessels, causing blood pressure to rise. A major class of blood pressure medications, called ACE inhibitors, work by reducing angiotensin II and increasing angiotensin-(1-7).

Evidence from population studies in Scotland had suggested that people who were taking ACE inhibitors for high blood pressure had a reduced risk both of cancer occurrence and of cancer death. The effect was most pronounced in lung cancer.

"Our results suggest that the reduced cancer risk observed in patients after administration of ACE inhibitors may be due, at least in part, to the elevated levels of angiotensin-(1-7)," Tallant and Gallagher said.

The cells for their research came from lung cancers in a 60-year-old female, a 58-year-old male and a 65-year-old male. None of the other angiotensin hormones tested slowed the growth of these lung cancer cells.

Tallant and Gallagher said their studies may point the way to a more successful treatment for lung cancer, still one of the most deadly forms of cancer, with only 13 percent of patients alive after five years.

They said either the administration of angiotensin-(1-7) directly, or through compounds that elevate the angiotensin circulating through the body, such as ACE inhibitors, may both treat and prevent lung cancer, with reduced side effects.

The work was supported by the National Institutes of Health and by a pilot project grant from the Comprehensive Cancer Center of Wake Forest University.

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>