Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood pressure hormone may inhibit growth of lung cancer

02.08.2004


A hormone that is important in the control of blood pressure may also inhibit the growth of lung cancer cells, say scientists at Wake Forest University Baptist Medical Center, writing in the new issue of the journal Carcinogenesis.



Patricia E. Gallagher, Ph.D., and E. Ann Tallant, Ph.D., said the hormone, called angiotensin-(1-7), "may represent a novel chemotherapeutic and chemopreventive treatment for lung cancer."

Their studies found that angiotensin-(1-7) significantly slows the growth of three different types of human lung cancer cells in the laboratory. "Our experiments provide the first evidence that angiotensin-(1-7) inhibits the proliferation of human lung cancer cells," they said.


They hypothesized that the hormone serves as a natural regulator of cell growth, both by reducing the rapid proliferation of cells common in cancer and by increasing cancer cell death.

Gallagher and Tallant have been working with angiotensin-(1-7) for years as members of the Hypertension and Vascular Disease Center faculty. The director of the center, Carlos M. Ferrario, M.D., discovered angiotensin-(1-7) in 1988, and found it to be a critical element of the blood pressure control system.

Angiotensin-(1-7) relaxes (dilates) the walls of the blood vessels, causing blood pressure to be lowered while its hormonal counterpart, angiotensin II, constricts blood vessels, causing blood pressure to rise. A major class of blood pressure medications, called ACE inhibitors, work by reducing angiotensin II and increasing angiotensin-(1-7).

Evidence from population studies in Scotland had suggested that people who were taking ACE inhibitors for high blood pressure had a reduced risk both of cancer occurrence and of cancer death. The effect was most pronounced in lung cancer.

"Our results suggest that the reduced cancer risk observed in patients after administration of ACE inhibitors may be due, at least in part, to the elevated levels of angiotensin-(1-7)," Tallant and Gallagher said.

The cells for their research came from lung cancers in a 60-year-old female, a 58-year-old male and a 65-year-old male. None of the other angiotensin hormones tested slowed the growth of these lung cancer cells.

Tallant and Gallagher said their studies may point the way to a more successful treatment for lung cancer, still one of the most deadly forms of cancer, with only 13 percent of patients alive after five years.

They said either the administration of angiotensin-(1-7) directly, or through compounds that elevate the angiotensin circulating through the body, such as ACE inhibitors, may both treat and prevent lung cancer, with reduced side effects.

The work was supported by the National Institutes of Health and by a pilot project grant from the Comprehensive Cancer Center of Wake Forest University.

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht New method uses just a drop of blood to monitor lung cancer treatment
19.10.2018 | Osaka University

nachricht Photoactive bacteria bait may help in fight against MRSA infections
12.10.2018 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>