Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical Probe Might Find Missed Breast Cancers

26.07.2004


A light-sensitive probe is being developed to help doctors spot breast cancer in some of the 70,000 American women each year whose malignancies fail to show up in needle biopsies.



The technology also holds the potential of minimizing the trauma associated with the procedure, in which a hollow needle the width of a pencil is used to collect small tissue samples for testing.

Doctors now rely on X-rays or ultrasound images to guide the needle to the area in question. They may take a dozen tissue samples to be sure they do not miss anything. Yet sometimes they do.


"If you’re in the wrong spot and you don’t get the cancer, then you’re basically concluding that this woman doesn’t have a disease that needs to be treated," said Nirmala Ramanujam, Ph.D., assistant professor of biomedical engineering at the University of Wisconsin-Madison.

Missed diagnoses occur in as many as 70,000 American women each year, she said. Another 60,000 women have repeat biopsies because the initial results are inconclusive.

Ramanujam, graduate students Carmalyn Lubawy and Changfang Zhu, and radiologist Elizabeth Burnside, M.D., have developed thin, fiber-optic probes that can be threaded through the hollow channel of a biopsy needle to its tip. The probe, together with X-ray or ultrasound images, could ensure that the biopsy needle accurately reaches its target. If successful, Ramanujam’s optical probes could be used as an adjunct to standard biopsies.

The probe emits light at specific wavelengths and then collects the reflected light and fluorescence for analysis. The researchers look at how much light is absorbed by tissue and reemitted as fluorescence. They also measure how much light is scattered. Various components of tissue --- such as amino acids, proteins, enzymes and blood --- absorb and scatter light in specific ways. Tumors interact with light differently than normal tissue does.

Preliminary testing in 56 breast tissue samples from 37 women showed that the optical analysis correctly identified cancer with more than 90 percent accuracy. Further testing will begin in August on 250 patients. The research group has fine-tuned the optical probe in preparation for the new study and has won $1.2 million in support for the ongoing research from the National Cancer Institute and the National Institute of Biomedical Imaging and Bioengineering.

The probes can be trimmed thin enough to fit through a needle smaller than the current 1/4-inch biopsy device. This would make the entire procedure less invasive. Ramanujam has also simplified the analysis by carefully reducing the number of light wavelengths needed to make a diagnosis.

"Minimizing the number of wavelengths analyzed is advantageous clinically because it lends speed to the process and should require a less complex, more economical instrument," Ramanujam’s group reported in a recent issue of the journal Annals of Surgical Oncology.

Ramanujam received a Whitaker Foundation Biomedical Engineering Research Grant in 2001 for research in this area.

Frank Blanchard | EurekAlert!
Further information:
http://www.whitaker.org

More articles from Health and Medicine:

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht When wheels and heads are spinning - DFG research project on motion sickness in automated driving
22.05.2019 | Technische Universität Berlin

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>