Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Detection Method Overcomes Problem of Samples with Few Cells

26.07.2004


Finding cancer in a tiny drop of body fluid containing relatively few cells now may be possible with a new method of analyzing multiple genes in small samples of DNA, the cellular building blocks of our genetic code. The molecular test may be especially helpful in detecting cancer cells in breast fluid.



Preliminary tests of the new method, which can detect cancer in a sample with as few as 50 cells, were conducted on a small number of breast tissue samples and are reported in the July 1 issue of Cancer Research. "Our goal is to add a molecular solution to problems in cancer diagnosis where the sample is not adequate or microscopic evaluation of cells is unclear," says Sara Sukumar, Ph.D., the Barbara B. Rubenstein Professor of Oncology at the Johns Hopkins Kimmel Cancer Center. "If additional studies prove the feasibility of this test, it will provide molecular clues to cellular pathology and mammography findings that may help to decide whether cancer is present."

The test, called quantitative multiplex methylation-specific PCR or QM-MSP, works by looking for unusually high levels of molecules embedded by a process called methylation within critical regions of DNA. In this process, small methyl groups regulate DNA’s message-manufacturing process by attaching to the "on" switch of genes. Abnormal levels of methylation improperly turn the gene switch off, which ultimately leads to the loss of critical proteins found in normal cells. This adds to the cascade of genetic events leading to cancer.


"Until now, accurate levels of methylation in many genes at the same time was impossible without repeated tests, and with a small sample, we didn’t have enough DNA to perform all those tests," says Mary Jo Fackler, Ph.D., research associate at the Kimmel Cancer Center and first author of the study. "Now, we’ve taken two existing types of MSP tests and put them together, which minimizes the amount of sample needed."

QM-MSP determines the percentage of methylation present in each of four to five breast cancer genes. The percentages are added together for a cumulative score, which is compared to a threshold value. Levels above the threshold indicate the potential presence of cancer cells and below threshold suggests that the samples are normal.

In the first set of experiments, the Hopkins scientists tested QM-MSP on tissue samples using a panel of genes whose abnormal methylation patterns are known to be associated with breast cancer. The test detected cancer in 84 percent (16 of 19) of breast tumor samples, and found no cancer in 89 percent (eight of nine) normal tissues.

Next, the team tested QM-MSP on breast duct fluid samples obtained through a process called ductal lavage, a saline wash via a catheter threaded through the nipple. Of seven patients at high-risk for breast cancer and no known cancer present, six had no detectable levels of abnormal methylation in their breast cells, and one woman had low levels of abnormal methylation in one gene. QM-MSP detected cancer in two out of four breast cancer patients, which, the investigators say, indicates that this assessment tool holds some promise and is being evaluated in larger studies at Johns Hopkins.

According to the Hopkins team, the QM-MSP technique could be applied to the analysis of methylation in other cancers, such as oral lavage in head and neck, or sputum for lung cancer in which tissue samples are typically small.

This research was funded by the National Cancer Institute, Avon Foundation, Susan G. Komen Foundation, and the Department of Defense.

Other scientists participating in this research are Pedram Argani, M.D., Julie Lange, M.D., Elizabeth Garrett, Ph.D., Megan McVeigh, Jyoti Mehrotra, Ph.D., Marissa A. Blum, and Amanda Lapides from Johns Hopkins University School of Medicine.

| newswise
Further information:
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>