Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation Oncologists Expanding Scope of Life-saving Accuray Technology

23.07.2004


Thirty-one-year-old Karen Romero, blinded by a malignant brain tumor, had endured two years of chemotherapy before her cancer was finally eradicated at UT Southwestern Medical Center at Dallas with a new means of delivering radiation therapy.


Dr. Hak Choy (left), chairman of radiation oncology, and Dr. Lawrence Chinsoo Cho, associate professor of radiation oncology, are overseeing a new clinical trial for liver cancer using the Accuray, which pinpoints high-beam radiation therapy on cancer cells with unprecedented accuracy.



She believes – as do her doctors – that the treatment she received, which pinpoints high-beam radiation therapy on cancer cells with unprecedented accuracy, saved her life. After only two treatments, her ocular germinoma tumor appears to be gone.

The device used to deliver the radiation, called the Accuray CyberKnife, is in use at only a handful of medical centers in the United States. UT Southwestern doctors are hoping to expand its scope. They are seeking patients whose cancer has spread, or metastasized, to the liver to participate in a new series of clinical trials.


“I think this kind of treatment was very beneficial for me because of its effectiveness and a lack of side effects,” said Ms. Romero of Garland. “For example, I did not have any hair loss as I did with conventional chemotherapy, and there was less recuperation time and fatigue.”

Dr. Lawrence Chinsoo Cho, associate professor of radiation oncology at UT Southwestern, said the Accuray targets within a millimeter of cancerous cells while leaving surrounding healthy tissue unharmed. Instead of standard chemotherapy or conventional stereotactic radiosurgery systems that require rigid skeletal immobilization and have limited maneuverability, the Accuray employs a linear accelerator on a robotic arm to locate the position of the tumor and to focus beams of radiation on it. It compensates for body movement by keeping the beams focused precisely on the tumor.

“We have plenty of experience with the device, having used it for tumors of the brain, head and neck, base of the skull, cervical spine, pancreas and prostate,” said Dr. Hak Choy, chairman of radiation oncology. “We’re continually finding new uses for the Accuray because of its various unique capabilities.”

The device is cleared by the Food and Drug Administration for radiosurgery for lesions anywhere in the body when radiation treatment is needed.

“We’re tackling fights that were not possible to tackle before the advent of this technology,” said Dr. Cho, principal investigator for the new clinical trial. “We are going after tumors we have not treated routinely, and instead of going to the operating room and the recovery room, this can be done as an outpatient procedure.”

Approximately 40 patients are needed for the initial phase of the trial, which is expected to last for a year to 18 months and is designed to find the right treatment dose and assess toxicity. Participant responses to treatment will be determined by positron emission tomography scans prior to and about two months after the last treatment. There will be three Accuray treatments over a seven- to 10-day period, with each procedure taking a couple of hours on an outpatient basis.

The second phase of the clinical trial will enroll another 30 metastasized liver cancer patients to evaluate the overall response and efficacy of the Accuray, said Dr. Cho.

Pre- and postoperative procedures will be conducted at the Moncrief Radiation Oncology Center and the Accuray treatments themselves will take place at Zale Lipshy University Hospital – both UT Southwestern facilities. Patients will have an initial consultation with Dr. Cho and the other doctors in the clinical trial team and undergo a computed tomography scan to construct a 3-D image of the tumor and develop a customized treatment plan.

Tiny seeds will be permanently placed in the abdomen region to define the areas of treatment. The Accuray’s image-guidance system uses the seeds to precisely localize and track the spatial position of the liver at the start of and throughout each radiation treatment.

As for Ms. Romero, mother of 5-year-old Isaac, “I wouldn’t be alive today if it weren’t for the Accuray – and the UT Southwestern doctors. They quite simply saved my life.”

| newswise
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>