Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protective mechanism exploited by tumors may provide new cancer treatment

16.07.2004


Like a parasite exploiting its host, some tumors protect themselves by recruiting non-tumor cells that normally help keep the immune system in check, say researchers at the Medical College of Georgia.



When the researchers looked into the lymph nodes where tumors drain – typically the first place tumors spread – they found a subset of normal host immune cells were expressing IDO, an immunosuppressive enzyme also expressed by the fetus to help avoid rejection by the mother’s immune system. They also found that when they gave a drug to block IDO expression, the immune system rallied.

"Our hypothesis in this situation was that the bad guys in this case were actually cells from the host, perfectly normal cells that had, in a sense, been requested by the tumor," says Dr. David Munn, pediatric hematologist-oncologist and lead author on the study published in the July 15 issue of Journal of Clinical Investigation.


Now they have shown in an animal model that these normal cells are a type of dendritic cell that was previously ignored by the scientists because they believed the cells were involved in making antibodies not in suppressing the immune system. By recognizing the actual role of these previously discarded cells, the MCG scientists and their collaborators have moved significantly closer to using this approach to help cancer patients.

"We have demonstrated that the IDO inhibitor drug is useful in mice," says Dr. Munn. "It’s useful in a tumor model that is related to the kinds of patients we would want to treat. This brings us closer to being able to approach the FDA suggesting that IDO inhibitor drugs would be appropriate to use in patients."

The National Institutes of Health will do toxicity studies of the IDO inhibitor as well as other studies needed to take the proposal for clinical trials to the Food and Drug Administration, Dr. Munn says.

Should the FDA move toward clinical trials, it likely will be at least a year before studies begin to look at the safety and efficacy of the treatments that would help make tumors more vulnerable to the immune system, Dr. Munn says. He added that the therapy likely would be an adjunct to existing approaches such as chemotherapy and possibly a tumor vaccine that stimulates the immune response.

"It’s a general property of any tumor that survives long enough to come to medical attention that it has figured out a way to evade the immune system," Dr. Munn says. "What we would hope is that some group of tumors would rely primarily on this IDO mechanism to do that. It may not be because they are a particular type of tumor. It may be that tumors try different mechanisms and some breast cancers, colon cancers, melanomas or whatever hit on this particular strategy."

The idea of using this strategy against tumors began in 1998 when MCG scientists reported in Science that the fetus used IDO – indoleamine 2,3-dioxygenase – to locally disable the mother’s immune system and avoid rejection. The potential of using the IDO mechanism to manipulate immune response is being explored in other areas as well, such as protecting transplanted organs from rejection and helping the immune system fight HIV infection.

Fortunately, several compounds that might inhibit IDO already existed, developed as part of studying pathways involving the natural amino acid, tryptophan. Tryptophan is a precursor to the neurotransmitter, serotonin, and some popular antidepressants work by making serotonin more available to the brain. IDO suppresses the immune response by degrading tryptophan, which also is important to T cells, major orchestrators of the immune response.

The MCG researchers were able to identify and isolate the IDO-expressing cells recruited by the tumor by using state-of-the-art cell-sorting equipment purchased for MCG by the Georgia Research Alliance. "Once we had them isolated, that allowed us to test them in vitro to see if they really were suppressive like we thought," Dr. Munn says. "Then, the most convincing part of this to us was that we could transfer the cells from a mouse that had a tumor into another that didn’t and see if the immune system of the tumor-free mouse also became suppressed. And the answer was, ’Yes it did.’"

While he is excited about the potential of using the laboratory findings to help patients, Dr. Munn says the steps from bench to bedside are still complex. In the last few years, scientists have recognized that the immune system is not a passive observer. Rather, there are ongoing natural mechanisms, including IDO expression, that actively help keep the immune system tolerant. "We have to be tolerant of ourselves all the time; otherwise, you get autoimmune diseases such as arthritis and lupus," Dr. Munn says. "It’s the difference between a car that is sitting there not moving but doesn’t have on the emergency brake so it could move versus one that has on the emergency brake and can’t move until you take it off. Natural tolerance mechanisms are like a brake that must be removed before the immune system will attack the tumor.

"If you take off the brakes (for example with an IDO inhibitor drug), you may make people sick. We need to be very careful that we do not do something that causes harm to patients. So that is our next task: to test it in animal models to see if it’s a safe and appropriate thing to give patients," Dr. Munn says.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht New method uses just a drop of blood to monitor lung cancer treatment
19.10.2018 | Osaka University

nachricht Photoactive bacteria bait may help in fight against MRSA infections
12.10.2018 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>